早教吧作业答案频道 -->数学-->
椭圆ax^2+by^2=1与直线x+y=1相交于A,B两点,C为AB中点,|AB|=2√2,O为坐标原点,OC的斜率为√2/2求椭圆方程
题目详情
椭圆ax^2+by^2=1与直线x+y=1相交于A,B两点,C为AB中点,|AB|=2√2,O为坐标原点,OC的斜率为√2/2
求椭圆方程
求椭圆方程
▼优质解答
答案和解析
设A(x1,y1),B(x2,y2),用点差法得,
a(x1-x2)(x1+x2)+b(y1-y2)(y1+y2)=0,(y1-y2)/(x1-x2)= -1,
所以OC的斜率=(y1+y2)/(x1+x2)=a/b=√2/2,所以a√2=b, ①
所以椭圆ax^2+(√2)ay^2=1,与直线x+y-1=0联立,得
ax^2+b(x-1)^2=1
(a+b)x^2-2bx+b-1=0
x1+x2=2b/(a+b)
x1x2=(b-1)/(a+b)
再由|AB|=2√2=[√(1+kAB^2)]*√[(x1+x2)^2-4x1x2]=√[(x1+x2)^2-4x1x2]√2,
即2=√[(x1+x2)^2-4x1x2]=√{[2b/(a+b)]^2-4[(b-1)/(a+b)]} 两边平方得
b^2=(a+b)(b-1)化简得 a+b=ab ②
将①②联立方程组
最后解得a=(2+√2)/2,b=1+√2
所以椭圆方程为[(2+√2)/2]x^2+(1+√2)y^2=1
a(x1-x2)(x1+x2)+b(y1-y2)(y1+y2)=0,(y1-y2)/(x1-x2)= -1,
所以OC的斜率=(y1+y2)/(x1+x2)=a/b=√2/2,所以a√2=b, ①
所以椭圆ax^2+(√2)ay^2=1,与直线x+y-1=0联立,得
ax^2+b(x-1)^2=1
(a+b)x^2-2bx+b-1=0
x1+x2=2b/(a+b)
x1x2=(b-1)/(a+b)
再由|AB|=2√2=[√(1+kAB^2)]*√[(x1+x2)^2-4x1x2]=√[(x1+x2)^2-4x1x2]√2,
即2=√[(x1+x2)^2-4x1x2]=√{[2b/(a+b)]^2-4[(b-1)/(a+b)]} 两边平方得
b^2=(a+b)(b-1)化简得 a+b=ab ②
将①②联立方程组
最后解得a=(2+√2)/2,b=1+√2
所以椭圆方程为[(2+√2)/2]x^2+(1+√2)y^2=1
看了 椭圆ax^2+by^2=1与...的网友还看了以下:
(1)已知椭圆C x^2/2+y^2=1 的右焦点为F .O为坐标原点 (1)求过点O,F并且与直 2020-05-13 …
椭圆方程问题椭圆c两焦点为—1,0和1,0且过点a(1,3/2),o为原点.求椭圆方程.过点o作两 2020-05-15 …
椭圆C的中心为坐标原点O,焦点在x轴上,离心率e=32,且椭圆过点(2,0).(1)求椭圆方程;( 2020-05-15 …
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,右焦点到直线x/a+ 2020-05-16 …
椭圆的中心为原点O,离心率e=√2/2,一条准线的方程为x=2√2……椭圆的中心为原点O,离心率e 2020-05-16 …
已知椭圆x^2/2+y^2=1的左焦点为F,O为坐标原点,设过点F且不与坐标轴垂直的直线交椭已知椭 2020-05-16 …
已知中心在原点O的椭圆、右焦点为F(1,0)经过F点与X轴垂直的弦长为根号2.过电F的直线l与椭圆 2020-06-21 …
已知椭圆C:x2a2+y2b2=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左 2020-06-21 …
有关椭圆的问题已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√2/2,椭圆的任 2020-07-24 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …