早教吧作业答案频道 -->数学-->
已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,(1)求函数f(x)的单调递增区间;(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
题目详情
已知函数f(x)=2cosxsin(x+π/6)-sin²x+cos²x,
(1)求函数f(x)的单调递增区间;
(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
(1)求函数f(x)的单调递增区间;
(2)当x∈[-π/12,π/6],求函数f(x)的最大值、最小值及相应的x值
▼优质解答
答案和解析
2cosxsin(x+π/6)-sin²x+cos²x
=2cosx﹙sinxcosπ/6+cosxsinπ/6﹚+cos2x
=√3cosxsinx+cos²x+cos2x
=√3sin2x/2+﹙cos2x+1﹚/2+cos2x
=√3sin2x/2+3cos2x/2+1/2
=√3(sin2x/2+√3cos2x/2﹚+1/2
=√3(sin﹙2x+π/3﹚+1/2
∵2x+π/3∈[2kπ-π/2,2kπ+π/2],k∈Z时,f(x)递增
∴函数f(x)的单调递增区间是[kπ-5π/12,kπ+π/12],k∈Z
当x∈[-π/12,π/6],2x+π/3∈[π/6,2π/3]
∴当2x+π/3=π/2即x=π/12时,f(x)的最大值是√3+1/2;
当2x+π/3=π/6即x=﹣π/12时,f(x)的最小值是√3/2+1/2.
=2cosx﹙sinxcosπ/6+cosxsinπ/6﹚+cos2x
=√3cosxsinx+cos²x+cos2x
=√3sin2x/2+﹙cos2x+1﹚/2+cos2x
=√3sin2x/2+3cos2x/2+1/2
=√3(sin2x/2+√3cos2x/2﹚+1/2
=√3(sin﹙2x+π/3﹚+1/2
∵2x+π/3∈[2kπ-π/2,2kπ+π/2],k∈Z时,f(x)递增
∴函数f(x)的单调递增区间是[kπ-5π/12,kπ+π/12],k∈Z
当x∈[-π/12,π/6],2x+π/3∈[π/6,2π/3]
∴当2x+π/3=π/2即x=π/12时,f(x)的最大值是√3+1/2;
当2x+π/3=π/6即x=﹣π/12时,f(x)的最小值是√3/2+1/2.
看了 已知函数f(x)=2cosx...的网友还看了以下:
(1),设g(x)=1+x,且当x≠0时,f(g(x))=(1-x)/x,求f(1/2)(2),f 2020-04-26 …
设g(x)=1+x,且当x不等于0时f[g(x)]=1-x/x,则f(1/2)=()参考答案f[g 2020-05-04 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
已知函数f(x)=-x+loga^1-x/1+x,则f(-1/5)+f(-1/4)+f(-1/3) 2020-06-09 …
有关导数与微分概念命题?若f(x+1)=af(x)总成立,且f'(0)=b,a,b为非零常数,则f 2020-06-10 …
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)> 2020-06-12 …
设f(x)是定义在(0,正无穷)上的单调函数,一直对于任意正数x,都有f(f(x)+1/x)=1/ 2020-07-22 …
试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x^2+y^2)=xf(x)+yf(y 2020-10-31 …
求教已知函数f(x)满足f(x)=f'(1)e^(x-1)-f(0)x+(1/2)x²已知函数f(x 2020-12-08 …
最近被一个问题搞糊涂了已知f'(x)=lnx/(1+x)那么f'(1/x)=ln(1/x)/[1+( 2020-12-28 …