早教吧作业答案频道 -->数学-->
.平面直角坐标系中,平行四边形ABCD如图放置,点A、C的坐标分别为(3,0)(-1,0)平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形
题目详情
.平面直角坐标系中,平行四边形ABCD如图放置,点A、C的坐标分别为(3,0)(-1,0)
平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A/B/OC/.(1)若抛物线过点C,A,A′,求此抛物线的解析式;(2)求口ABOC和平行四边形A/B/OC/重叠部分△ODC′的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.
图

平面直角坐标系中,口ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A/B/OC/.(1)若抛物线过点C,A,A′,求此抛物线的解析式;(2)求口ABOC和平行四边形A/B/OC/重叠部分△ODC′的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.
图

▼优质解答
答案和解析
(1)设过点C(-1,0),A(0,3),A'(3,0)的抛物线为y=ax²+bx+c.则:
0=a-b+c;
3=c;
0=9a+3b+c.
解得:a=-1,b=2,c=3.故此抛物线为y= -x²+2x+3.
(2)∠C'OD=∠CAO;∠OC'D=∠OCA.
∴∠C'OD+∠OC'D=∠CAO+∠OCA=90°,则∠ODC'=∠OAB=90°.
又∠C'OD=∠BOA.故⊿C'OD∽⊿BOA,(C'O+OD+DC')/(BO+OA+AB)=OC'/OB.
即(C'O+OD+DC')/(√10+3+1)=1/√10,C'O+OD+DC'=(5+2√10)/5.
(3)设点M为(m,n),作MH垂直Y轴于H,则MH=m,OH=n;n=-m²+2m+3.
连接AA',则S⊿AMA'=S梯形MHOA'-S⊿MHA-S⊿AOA'
即S⊿AMA'=(MH+OA')*OH/2-MH*HA/2-3*3/2=(m+3)*n/2-m*(n-3)/2-9/2=(3/2)n+(3/2)m-9/2
=(3/2)*(-m²+2m+3)+(3/2)m-9/2=(-3/2)m²+(9/2)m=(-3/2)(m-3/2)²+27/8.
∴当m=3/2时,S⊿AMA'有最大值,且最大值为27/8;
此时:n=-m²+2m+3=-(3/2)²+2*(3/2)+3=15/4.即此时点M为(3/2,15/4).
0=a-b+c;
3=c;
0=9a+3b+c.
解得:a=-1,b=2,c=3.故此抛物线为y= -x²+2x+3.
(2)∠C'OD=∠CAO;∠OC'D=∠OCA.
∴∠C'OD+∠OC'D=∠CAO+∠OCA=90°,则∠ODC'=∠OAB=90°.
又∠C'OD=∠BOA.故⊿C'OD∽⊿BOA,(C'O+OD+DC')/(BO+OA+AB)=OC'/OB.
即(C'O+OD+DC')/(√10+3+1)=1/√10,C'O+OD+DC'=(5+2√10)/5.
(3)设点M为(m,n),作MH垂直Y轴于H,则MH=m,OH=n;n=-m²+2m+3.
连接AA',则S⊿AMA'=S梯形MHOA'-S⊿MHA-S⊿AOA'
即S⊿AMA'=(MH+OA')*OH/2-MH*HA/2-3*3/2=(m+3)*n/2-m*(n-3)/2-9/2=(3/2)n+(3/2)m-9/2
=(3/2)*(-m²+2m+3)+(3/2)m-9/2=(-3/2)m²+(9/2)m=(-3/2)(m-3/2)²+27/8.
∴当m=3/2时,S⊿AMA'有最大值,且最大值为27/8;
此时:n=-m²+2m+3=-(3/2)²+2*(3/2)+3=15/4.即此时点M为(3/2,15/4).

看了 .平面直角坐标系中,平行四边...的网友还看了以下:
如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相 2020-05-13 …
乘坐我县某种出租汽车的定价是这样的:当行驶路程小于或等于2千米时,乘车费用都是7元(即起步价7元) 2020-05-14 …
由八个平行四边形组成的大平行四边形,一共可以数出几个平行四边形上边四个小平行四边形,下边四个小平行 2020-06-02 …
一个三角形与一个平行四边形的底相等,而且平行四边形的高是三角形的2倍.平行四边形的面积是三角形多少 2020-06-18 …
任意一个平行四边形都可以拼割成一个长方形,其面积与平行四边形的面积,长与平行四边形的相等,宽与平行 2020-07-14 …
“所有矩形都是平行四边形”的否定.存在一个矩形不是平行四边形.能说“存在一个矩形不都是平行四边形” 2020-07-30 …
长方形和正方形为什么不是平行四边形,不是说平行四边形对顶角相等,那照理讲长方形和正方形是特殊的平. 2020-08-01 …
如图,在平面直角坐标系中,O为坐标原点,平行四边形ABOC的对角线交于点M,双曲线y=kx(x<0 2020-08-02 …
在平行四边形ABCD中,E,F分别为AB,CD的中点,连接DE,BF,BD为对角线.求证:(1)DE 2020-12-25 …
在平面直角坐标系中,点A的坐标为(0,2),点B坐标为(-2根号3,0),点c是x轴上不同于点B的一 2020-12-25 …