早教吧作业答案频道 -->数学-->
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,BAD=60°,N是PB中点,截面DAN交PC于M.(1)求证:MN∥平面PAD; (2)求证:PB⊥平面ADMN.
题目详情
如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,BAD=60°,N是PB中点,截面DAN交PC于M.
(1)求证:MN∥平面PAD;
(2)求证:PB⊥平面ADMN.
(1)求证:MN∥平面PAD;
(2)求证:PB⊥平面ADMN.
▼优质解答
答案和解析
证明:
(1)连接AC,AC与BD交于G,则面PAC∩面BDM=MG,
由PA∥平面BDM,可得PA∥MG(3分)
∵底面ABCD为菱形,∴G为AC的中点,
∴MG为△PAC的中位线.
因此M为PC的中点.(5分)
(2)取AD中点O,连接PO,BO.
∵△PAD是正三角形,∴PO⊥AD,又因为平面PAD⊥平面ABCD,
所以,PO⊥平面ABCD,(7分)
∵底面ABCD是菱形且∠BAD=60°,△ABD是正三角形,
∴AD⊥OB.
∴OA,OB,OP两两垂直,建立空间直角坐标系 {OA→,OB→,OP→}(7分)
则A(1,0,0),B(0,3,0),D(-1,0,0),P(0,0,3)
∴ DP→=(1,0,3),AB→=(-1,3,0)
∴ DM→=12(DP→+DC→)=12(DP→+AB→)=(0,32,32)(9分)
BP→=(0,-3,3),CB→=DA→=(2,0,0)
∴ DM→•BP→=0-32+32=0,DM→•CB→=0+0+0=0
∴DM⊥BP,DM⊥CB(11分)
∴DM⊥平面PBC,又DM⊂平面ADM,
∴面ADM⊥面PBC(12分)
(1)连接AC,AC与BD交于G,则面PAC∩面BDM=MG,
由PA∥平面BDM,可得PA∥MG(3分)
∵底面ABCD为菱形,∴G为AC的中点,
∴MG为△PAC的中位线.
因此M为PC的中点.(5分)
(2)取AD中点O,连接PO,BO.
∵△PAD是正三角形,∴PO⊥AD,又因为平面PAD⊥平面ABCD,
所以,PO⊥平面ABCD,(7分)
∵底面ABCD是菱形且∠BAD=60°,△ABD是正三角形,
∴AD⊥OB.
∴OA,OB,OP两两垂直,建立空间直角坐标系 {OA→,OB→,OP→}(7分)
则A(1,0,0),B(0,3,0),D(-1,0,0),P(0,0,3)
∴ DP→=(1,0,3),AB→=(-1,3,0)
∴ DM→=12(DP→+DC→)=12(DP→+AB→)=(0,32,32)(9分)
BP→=(0,-3,3),CB→=DA→=(2,0,0)
∴ DM→•BP→=0-32+32=0,DM→•CB→=0+0+0=0
∴DM⊥BP,DM⊥CB(11分)
∴DM⊥平面PBC,又DM⊂平面ADM,
∴面ADM⊥面PBC(12分)
看了 如图,在四棱锥P-ABCD中...的网友还看了以下:
英语翻译四边形ABCD有外接圆的充要条件是$S=sqrt((p-a)*(p-b)*(p-c)*(p- 2020-03-31 …
能解释一下为什么从一能层开始有s分层,从第二能层开始有s,p,然后s...能解释一下为什么从一能层 2020-05-23 …
如图,已知线段m,n,p,求做三角形ABC,使AB=m,AC=n,AD=p,D为BC边上的中点,并 2020-06-15 …
求证:四边形ABCD有外接圆的充要条件是S=√((p-a)*(p-b)*(p-c)*(p-d))其 2020-06-23 …
已知PA垂直于三角形ABC所在的平面a,D为BC的中点,又PB、PD、PC于平面a所成的角分别60 2020-07-21 …
如图所示,在直三棱柱中,AB=,⊥平面,D为AC的中点.(1)求证:∥平面;(2)求证:⊥平面;( 2020-07-21 …
梯形ABCD,AD//BC,AB⊥BC,AD=CD=5,AB=4,点P在BC上运动,点E在射线CD 2020-07-22 …
已知平面上的曲线C及点P,在C上任取一点Q,定义线段PQ长度的最小值为点P到曲线C的距离,记作d( 2020-07-30 …
已知线段PD垂直于正方形ABCD所在平面,D为垂足,|PD|=5cm,|AB|=8cm,连接PA、P 2020-11-02 …
(2013•江门二模)已知平面上的线段l及点P,在l上任取一点Q,线段PQ长度的最小值称为点P到线段 2020-11-12 …