早教吧作业答案频道 -->数学-->
证明:若 n 阶矩阵 A 满足:AAT = E 且 |A| = -1,则矩阵 A 必有一特征值为-1.
题目详情
证明:若 n 阶矩阵 A 满足:AAT = E 且 |A| = -1,则矩阵 A 必有一特征值为-1.
▼优质解答
答案和解析
只要证明|A+E|的行列式为0就可以了.
|A+E|=|A+AA^T|=|A(E+A^T)|=|A||E+A^T|=-|(A+E)^T|=-|A+E|
移一下项就得到 2|A+E|=0,从而|A+E|=0,即A必有一个特征值为-1.
不清楚再讨论:Q1054 7 2 1 2 4 6
|A+E|=|A+AA^T|=|A(E+A^T)|=|A||E+A^T|=-|(A+E)^T|=-|A+E|
移一下项就得到 2|A+E|=0,从而|A+E|=0,即A必有一个特征值为-1.
不清楚再讨论:Q1054 7 2 1 2 4 6
看了 证明:若 n 阶矩阵 A 满...的网友还看了以下:
A和B皆为矩阵.若A是m*n矩阵 B是n*m矩阵,证明 如果m大于n,AB(A和B想乘出来的矩阵) 2020-04-05 …
设A为4*3矩阵,B为3*4矩阵,若3阶矩阵C满足C^2-5C-(|AB|-7)E=0,其中E为3 2020-04-12 …
关于线性代数的问题,急·····1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵 2020-05-14 …
若A是对称矩阵,B是反对称矩阵,AB-BA是否对为对称矩阵?若是,证明你的结论;若不是,请举例说明 2020-06-10 …
一道高等代数关于迹Tr的问题(1)证明,若一复方阵的所有特征值全为0,则A为幂零矩阵;(2)证明对 2020-06-19 …
1.设A是3阶实对称矩阵,若A^2=0,证明A=0问一下用相似对角化怎么证?2.若证矩阵为零,让其 2020-06-22 …
矩阵·,挑战看看呗~1.证明:若AB=0且A可逆,则B=02.证明:AX=AY且A可逆,则X=Y3 2020-07-15 …
证明:任意一个n阶矩阵都可以表示为一个对称矩阵……1.证明:任意一个n阶矩阵都可以表示为一个对称矩阵 2020-11-02 …
若A是正规矩阵,请证明:若A、B可交换,则A的复共轭装置A(H)与B也可交换.另:若A=B^2,且存 2020-12-01 …
设AB为两个n阶正定矩阵,AB=BA,证明AB也是正定矩阵.为何要证明AB为对称矩阵,只证明AB可表 2021-01-01 …