早教吧作业答案频道 -->数学-->
函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围x^2+2x+a整个除以x.
题目详情
函数f(x)=x^2+2x+a/x.x∈[1,+∞] (1)当a=1/2时求函数f(x)的最小值
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围
x^2+2x+a整个除以x.
(2)若对任意x∈[1,+∞],f(x)>0成立,求实数a的取值范围
x^2+2x+a整个除以x.
▼优质解答
答案和解析
(1)当a=1/2时 x∈[1,+∞]
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我.
∴f(x)=(x^2+2x+1/2)/x=x+1/2x+2
∴对f(x)求导得: f'(x)=1-1/(4x^2)
∵x∈[1,+∞] ∴1/(4x^2)<1 ∴f'(x)=1-1/(4x^2)>0恒成立
∴f(x)在x∈[1,+∞] 上为增函数 , ∴x=1时 f(x)取得最小值为:
f(x)min=7/2
(2)∵f(x)=(x^2+2x+a)/x=x+a/x+2
对任意x∈[1,+∞],f(x)>0恒成立 即 x+a/x+2>0
∵x∈[1,+∞] ∴对不等式 x+a/x+2>0进行移项变形得:
a>-x^2-2x
令 : g(x)=-x^2-2x , x∈[1,+∞]
∴g(x)=-x^2-2x =-(x+1)^2+1
∴g(x)在 x∈[1,+∞] 上为减函数 ∴g(x)最大值为:
g(x)max=g(1)=-3
∴a>(-x^2-2x)max=g(x)max=-3
∴a的取值范围为: a>-3
若有不懂可再问我.
看了 函数f(x)=x^2+2x+...的网友还看了以下:
1:函数f(x)=x^3+3/2x^2+m在[-2,1]上的最大值为9/2,则m等于多少?2:设f( 2020-03-31 …
已知二次函数f(x)=(x+1)^2 /4 问 若f(x)大于等于mx-m恒成立,求m取值范围第2 2020-05-13 …
f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1f(1)=f(2)=1,证明有§∈( 2020-05-14 …
符号“f”表示一种算法,它对一些数的运算结果如下:(1)f(1)=0,f(2)=1,f(3)=2, 2020-05-16 …
函数f(x)=2x^3/x+1,x∈(1/2,1],f(x)=-1/3x+1/6,x∈[0,1/2 2020-05-16 …
若函数f(x)为偶函数,f(x—1)为奇函数,f(2)=—1,f(1)+f(2)+f(3)+f(4 2020-05-20 …
如题函数f(x)对任意实数x满足条件f(x+1)=1/f(x)若f(1)=-5,则f[f(5)]= 2020-06-06 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
函数F(X)当X大于0有意义、且满足条件F(2)=1,F(XY)=F(X)+F(Y),F(X)是增 2020-06-27 …