早教吧作业答案频道 -->数学-->
设ab属于R,且a不等于2,定义在区间(-b,b)内的函数f(x)=lg1+ax/1+2x是奇函数.(1)求b的取值范围(2)讨论函数f(x)的单调性
题目详情
设ab属于R,且a不等于2,定义在区间(-b,b)内的函数f(x)=lg1+ax/1+2x是奇函数.
(1)求b的取值范围
(2)讨论函数f(x)的单调性
(1)求b的取值范围
(2)讨论函数f(x)的单调性
▼优质解答
答案和解析
0<b<1/2,减函数
1、f(-x)=lg[(1-ax)/(1-2x)]=-f(x)=-lg[(1+ax)/(1+2x)]
所以,[(1-ax)/(1-2x)]×[(1+ax)/(1+2x)]=1,得1-4x^2=1-a^2x^2,所以a^2=4,a≠2,所以a=-2
f(x)=lg[(1-2x)/(1+2x)]的定义域是(-1/2,1/2),所以当0<b<1/2时,f(x)在区间(-b,b)内是奇函数
2、只考虑(0,1/2)内的单调性即可
(1-2x)/(1+2x)=2/(1+2x)-1,
因为y=1+2x是增函数,y=1/x是减函数,所以2/(1+2x)在(0,1/2)内是减函数,所以(1-2x)/(1+2x)是减函数
y=lgx在(0,1/2)内是增函数,所以f(x)=lg[(1-2x)/(1+2x)]在(0,1/2)内单调减少
又f(x)是奇函数,所以f(x)在(-b,b)内单调减少
1、f(-x)=lg[(1-ax)/(1-2x)]=-f(x)=-lg[(1+ax)/(1+2x)]
所以,[(1-ax)/(1-2x)]×[(1+ax)/(1+2x)]=1,得1-4x^2=1-a^2x^2,所以a^2=4,a≠2,所以a=-2
f(x)=lg[(1-2x)/(1+2x)]的定义域是(-1/2,1/2),所以当0<b<1/2时,f(x)在区间(-b,b)内是奇函数
2、只考虑(0,1/2)内的单调性即可
(1-2x)/(1+2x)=2/(1+2x)-1,
因为y=1+2x是增函数,y=1/x是减函数,所以2/(1+2x)在(0,1/2)内是减函数,所以(1-2x)/(1+2x)是减函数
y=lgx在(0,1/2)内是增函数,所以f(x)=lg[(1-2x)/(1+2x)]在(0,1/2)内单调减少
又f(x)是奇函数,所以f(x)在(-b,b)内单调减少
看了 设ab属于R,且a不等于2,...的网友还看了以下:
高中数学~高手进.难题!已知f(x)=ax/(ax+b)且不等式|f(x)|>2的解集为(-2,- 2020-06-04 …
设函数f(x)=e^(x-1)+a/x(I)若函数f(x)在x=1处有极值,且函数g(x)=f(x 2020-06-06 …
若f(x+a)=-f(x);f(x+a)=1/f(x);f(a+x)=-1/f(x);则f(x)是 2020-06-12 …
设在a的某邻域内有f(x)有连续的二阶导数,且f'(a)不等于0,求w=(x->a)lim{[[1 2020-06-16 …
f(x)在[0,1]连续,在(0,1)可导.f(0)=0,f(1)=1.证明存在两点a,b属于(f 2020-06-18 …
设映射f:X->Y,A属于X。记f(A)的原像为f-1(f(A))证明⑴A属于f-1(f(A)); 2020-06-26 …
构造函数f﹙x﹚、g﹙x﹚,其定义域为﹙0,1﹚,值域为[0,1].﹙1﹚对于任意a∈[0,1], 2020-07-26 …
已知函数f(X)=ax-b/x-2lnx,f(1)=0(1)若函数f(x)在其定义域内为单调函数, 2020-08-01 …
运用函数抽象式,根据已知条件求周期1)f(x+A)=-f(x)2)f(x+A)=1/f(x)3)f 2020-08-02 …
已知函数f(X)=ax-b/x-2lnx,f(1)=0(1)若函数f(x)在其定义域内为单调函数,求 2021-01-31 …