早教吧作业答案频道 -->数学-->
已知数列{An}的通项公式An=n.cos(nπ/2+π/3),记Sn=a1+a2+…+an,求S2002
题目详情
已知数列{An}的通项公式An=n.cos(nπ/2+π/3),记Sn=a1+a2+…+an,求S2002
▼优质解答
答案和解析
a(n) = ncos(nπ/2+π/3),n = 1,2,...
a(4k) = 4kcos(4kπ/2+π/3) = 4kcos(π/3) = 2k,
a(4k+1) = (4k+1)cos[(4k+1)π/2+π/3] = (4k+1)cos[π/2+π/3]
= (4k+1)sin(-π/3) = -(4k+1)3^(1/2)/2.
a(4k+2) = (4k+2)cos[(4k+2)π/2+π/3] = (4k+2)cos[π+π/3]
= -(4k+2)/2 = -(2k+1)
a(4k+3) = (4k+3)cos[(4k+3)π/2+π/3] = (4k+3)cos[3π/2+π/3]
= (4k+3)sin(-π/3) = -(4k+3)3^(1/2)/2.
S(2002) = [a(1) + a(5) + ...+ a(2001)] + [a(2) + a(6) + ...+ a(2002)] + [a(3) + a(7) + ...+ a(1999)] + [a(4) + a(8) + ...+ a(2000)]
= -3^(1/2)/2[1 + 5 + ...+ 2001] - [1 + 3 + ...+ 1001] -3^(1/2)/2[3 + 7 + ...+ 1999] + [2 + 4 + ...+ 1000]
= -3^(1/2)/2[1 + 3 + 5 + ...+ 1999 + 2001] - [1 + 1001]^2/4 + [2 + 1000]*500/2
= -3^(1/2)/2[1 + 2001]^2/4 - 1002^2/4 + 501*500
= -3^(1/2)/2[2002]^2/4 - 501^2 + 501*500
= -3^(1/2)/2[1001]^2 - 501
a(4k) = 4kcos(4kπ/2+π/3) = 4kcos(π/3) = 2k,
a(4k+1) = (4k+1)cos[(4k+1)π/2+π/3] = (4k+1)cos[π/2+π/3]
= (4k+1)sin(-π/3) = -(4k+1)3^(1/2)/2.
a(4k+2) = (4k+2)cos[(4k+2)π/2+π/3] = (4k+2)cos[π+π/3]
= -(4k+2)/2 = -(2k+1)
a(4k+3) = (4k+3)cos[(4k+3)π/2+π/3] = (4k+3)cos[3π/2+π/3]
= (4k+3)sin(-π/3) = -(4k+3)3^(1/2)/2.
S(2002) = [a(1) + a(5) + ...+ a(2001)] + [a(2) + a(6) + ...+ a(2002)] + [a(3) + a(7) + ...+ a(1999)] + [a(4) + a(8) + ...+ a(2000)]
= -3^(1/2)/2[1 + 5 + ...+ 2001] - [1 + 3 + ...+ 1001] -3^(1/2)/2[3 + 7 + ...+ 1999] + [2 + 4 + ...+ 1000]
= -3^(1/2)/2[1 + 3 + 5 + ...+ 1999 + 2001] - [1 + 1001]^2/4 + [2 + 1000]*500/2
= -3^(1/2)/2[1 + 2001]^2/4 - 1002^2/4 + 501*500
= -3^(1/2)/2[2002]^2/4 - 501^2 + 501*500
= -3^(1/2)/2[1001]^2 - 501
看了 已知数列{An}的通项公式A...的网友还看了以下:
.定义:设有限集合A={x|x=ai,i≤n,i∈N+,n∈N+},S=a1+a2+…+an,则S 2020-04-25 …
对于n∈N+,将n表示为n=a0×2k+a1×2k-1+a2×2k-2+…+ak-1×21+ak× 2020-07-09 …
已知数列{an}满足a1=1,设该数列的前n项的和为S,且Sn,S(n+1),S(a1)成等差数列 2020-07-23 …
设数列{an}的首项a1=1,前n项和Sn满足关系式:3t*Sn-(2t+3)S(n-1)=3t( 2020-07-30 …
基础数列问题1*数列{an}中an+1-4an+4an+1=0(n>=2)a1=1bn=an+1- 2020-08-01 …
数列{An}中,An+1-4An-1+4An-1=0(n>=2),A1=1,Bn=An+1-2An 2020-08-01 …
请问:无穷等比数列{an}的前n项和是S=a1/(1-q)还是Sn=a1(1-q^n)/(1-q) 2020-08-02 …
已知数列{an}的首项a1≠0,其前n项的和为SnSn+2无穷等比数列{a(n)}的首项a1=1, 2020-08-02 …
若数列An:a1,a2…an(n≥2)满足丨ak+1-ak丨=1(k=1,2…,n-1)则称An为E 2020-10-31 …
高二数学问题2已知数列{a[n]}中,a1=1,a2=r(r大于0)且数列{a[n]*a[n+1]} 2020-11-29 …