早教吧作业答案频道 -->数学-->
已知数列an满足a(n+1)=-an^2+2an,且a1=9/10,令bn=lg(1-an),求1/bn所有项和
题目详情
▼优质解答
答案和解析
a = -an^2 + 2an
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) = -an^2 + 2an
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
看了已知数列an满足a(n+1)=...的网友还看了以下:
已知数轴上有A、B两点,A、B两点之间的距离为1,点A与原点的距离为4,求所所有满足条件的点B与原 2020-05-22 …
旋转对称图形旋转对称图形是只要有一个点满足要求就行了吗?需不需要所有的点都满足要求?应该不会有所有 2020-05-24 …
1已知方程lg|x|=-|x|+3的解在(k,k+1/2)内,且k是1/2的整数倍,则所有满足条件 2020-06-06 …
今有雏兔同笼,上有35头,下有94足,问雏.兔各有几只例题答案(1)每只雏比兔少2足,若全为雏,则 2020-06-16 …
学记三则原文译文为“虽然有美味的肉食,不吃,虽然有极好的道理,不学,所以学习之后才知道自己有所不足 2020-06-22 …
英语翻译窃观足下天资超迈,上有亲以为之依归,旁有兄弟以为之次助,春秋未三十,耳目聪明,若刻意于德义 2020-07-06 …
对数函数:log和lg有区别么?...看不懂勒都有区别么log和lg 2020-07-13 …
阅读冯小燕的《人生的不足和知足》一文,完成下列各题。①不管多么优秀的人,总有所不足,有所不能,有所不 2020-11-27 …
人生的不足和知足(16分)冯小燕不管多么优秀的人,总有所不足,有所不能,有所不及。一个政治家不可能 2020-11-27 …
强弱论知有所甚爱,知有所不足爱,可以用兵矣。故夫善将者,以其所不足爱者,养其所甚爱者。士之不能皆锐, 2020-12-07 …