早教吧作业答案频道 -->数学-->
已知数列an满足a(n+1)=-an^2+2an,且a1=9/10,令bn=lg(1-an),求1/bn所有项和
题目详情
▼优质解答
答案和解析
a = -an^2 + 2an
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) = -an^2 + 2an
a - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) - 1 = - an^2 + 2an - 1
a - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n) - 1 = - (an -1)^2
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
a2 - 1 = - (a1 - 1)^2
a3 - 1 = - (a2 - 1)^2 = -(a1 -1)^4
a4 - 1 = - (a3 - 1)^2 = -(a1 - 1)^8
a5 - 1 = - (a4 - 1)^2 = -(a1 - 1)^16
余此类推,得到
an -1 = - (a1 - 1)^[2^(n-1)]
代入 a1 = 9/10
an - 1 = - (1/10)^[2^(n-1)]
1 - an = (1/10)^[2^(n-1)] = 10^[-2^(n-1)]
bn = lg(1 - an) = -2^(n-1)
1/bn = -1/2^(n-1)
1/b1 = -1
Sn = -[1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)]
= - [1 - (1/2)^n]/(1 - 1/2)
= -2(1 - 1/2^n)
看了已知数列an满足a(n+1)=...的网友还看了以下:
已知定义在实数集R上的函数f(x)满足下列条件1)f(0)=0f(1)=12)对任意的实数x,y都 2020-05-13 …
已知关于x的一元二次方程x²+2(a-1)x+a²-7a-4=0的两根为x1,x2,且满足x1x2 2020-05-15 …
1.已知3X-4Y-2Z=0,2X-Y-8Z=0求(X^2+Y^+Z^)/XY+YZ+2XZ2.已 2020-06-06 …
已知向量a=(-2,1),b=(x,y),(Ⅰ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面 2020-06-11 …
还有几题问你一下.求满足|a-b|+ab=1的非负整数对(a、b)若|x-1|与|y+2|互为相反 2020-06-17 …
关于x的方程x²+2(a-1)x+a²-7a-9=0的两根X1X2,满足X1X2-3X1-3X2= 2020-07-18 …
已知x-1/x=5,求x^2/(x^4+x^2+1)的值若ab=1则1/(1+a^2)+1/(1+ 2020-07-20 …
平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1)(1)求满足a=mb+nc的实数 2020-07-30 …
已经幂函数y=x^(m^2-2-2)(m∈N)的图像关于原点对称,且在x>0时为减函数,求满足(a 2020-08-01 …
由1,2,3,4这四个数字组成四位数.abcd(数字可重复使用),要求满足a+c=b+d.这样的四位 2020-11-06 …