早教吧作业答案频道 -->数学-->
如果数列an的前n项和Sn=2分之3an-3,通项公式是
题目详情
如果数列an的前n项和Sn=2分之3an-3,通项公式是
▼优质解答
答案和解析
这个通项公式应该是Sn=lnn γ 其中γ为欧拉常数,具体推导过程: 学过高等数学的人都知道,调和级数S=1 1/2 1/3 ……是发散的,证明如下: 由于ln(1 1/n)ln(1 1) ln(1 1/2) ln(1 1/3) … ln(1 1/n) =ln2 ln(3/2) ln(4/3) … ln[(n 1)/n] =ln[2*3/2*4/3*…*(n 1)/n]=ln(n 1) 由于 lim Sn(n→∞)≥lim ln(n 1)(n→∞)= ∞ 所以Sn的极限不存在,调和级数发散. 但极限S=lim[1 1/2 1/3 … 1/n-ln(n)](n→∞)却存在,因为 Sn=1 1/2 1/3 … 1/n-ln(n)>ln(1 1) ln(1 1/2) ln(1 1/3) … ln(1 1/n)-ln(n) =ln(n 1)-ln(n)=ln(1 1/n) 由于 lim Sn(n→∞)≥lim ln(1 1/n)(n→∞)=0 因此Sn有下界 而 Sn-S(n 1)=1 1/2 1/3 … 1/n-ln(n)-[1 1/2 1/3 … 1/(n 1)-ln(n 1)] =ln(n 1)-ln(n)-1/(n 1)=ln(1 1/n)-1/(n 1)>ln(1 1/n)-1/n>0 所以Sn单调递减.由单调有界数列极限定理,可知Sn必有极限,因此 S=lim[1 1/2 1/3 … 1/n-ln(n)](n→∞)存在. 于是设这个数为γ,这个数就叫作欧拉常数,他的近似值约为0.57721566490153286060651209,目前还不知道它是有理数还是无理数. 于是我们得到Sn的公式是:Sn=lnn γ 在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等. 参考资料: http://baike.baidu.com/view/296190.htm
看了如果数列an的前n项和Sn=2...的网友还看了以下:
n(n+1)(n+2)最大公约数(n+1)(n+2)(n+3)(n+4)+1=分解公因式要理由和步骤 2020-03-30 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数...若自然数 2020-05-16 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
设有N件产品,从中任取n件.(不放回)书上写取法共CnN,即[N(N-1)…(N-n+1)]/n! 2020-07-21 …
对任意正整数n,定义n的阶乘n!如下:n!=n(m-1)(n-2)×…×3×2×1.例如3!=3× 2020-07-29 …
高中数学证明1+x+x^2/2!+x^3/3!+...+x^n/n!=0当n为偶数时没有实根;n为 2020-07-29 …
复合函数的高阶求导问题!课本上给出了1/x的高阶求导公式(-1)^n*n!/(x)^(n+1)复合 2020-08-02 …
在等差数列{an}中,若am=p,an=q(m,n∈N*,n-m≥1),则am+n=nq−mpn− 2020-08-02 …
当然;肯定;一定(adv.)蔬菜(n.)水果(n.)正确的;适当的(adj.)苹果(n.)蛋;鸡蛋( 2020-12-03 …