早教吧作业答案频道 -->数学-->
高二数学题求助已知抛物线y^2=4x的顶点为o,过点(-1,0)且平行于向量a=(1,k)的直线于抛物线c交于A,B两点,当实数k变化时:(1)求证:向量OA*向量OB是一个与k无关的常数(2)若向量OM=向量OA+向量
题目详情
高二数学题求助
已知抛物线y^2=4x的顶点为o,过点(-1,0)且平行于向量a=(1,k)的直线于抛物线c交于A,B两点,当实数k变化时:
(1)求证:向量OA*向量OB是一个与k无关的常数
(2)若向量OM=向量OA+向量OB,求向量om的绝对值的最小值
已知抛物线y^2=4x的顶点为o,过点(-1,0)且平行于向量a=(1,k)的直线于抛物线c交于A,B两点,当实数k变化时:
(1)求证:向量OA*向量OB是一个与k无关的常数
(2)若向量OM=向量OA+向量OB,求向量om的绝对值的最小值
▼优质解答
答案和解析
(1)
∵过点(-1,0)的直线平行于向量a=(1,k)
∴该直线的斜率为k
∴该直线方程为y=kx+k
设A(x1,y1),B(x2,y2)
由y=kx+k和y^2=4x得k²x²+(2k²-4)x+k²=0 (1)
x1、x2为方程(1)的两个根
∴x1x2=1,x1+x2=4/k²-2
向量OA*向量OB=x1x2+y1y2=1+(kx1+k)(kx2+k)
=1+k²x1x2+k²x1+k²x2+k²
=1+k²+k²(x1+x2)+k²
=1+2k²+k²(4/k²-2)
=1+2k²+4-2k²=5
∴向量OA*向量OB是一个与k无关的常数
(2)
∵向量OM=向量OA+向量OB
两边平方得|OM|²=|OA|²+|OB|²+2倍的向量OA*向量OB
∴|OM|²=x1²+y1²+x2²+y2²+10
=x1²+4x1+x2²+4x2+10
=(x1+x2)²-2x1x2+4(x1+x2)+10
=(4/k²-2)²+4(4/k²-2)+8
=(4/k²-2+2)²+4
=16/k^4+4
∵方程k²x²+(2k²-4)x+k²=0 有实根
∴△>=0,即(2k²-4)²-4k²k²>=0
∴k²
∵过点(-1,0)的直线平行于向量a=(1,k)
∴该直线的斜率为k
∴该直线方程为y=kx+k
设A(x1,y1),B(x2,y2)
由y=kx+k和y^2=4x得k²x²+(2k²-4)x+k²=0 (1)
x1、x2为方程(1)的两个根
∴x1x2=1,x1+x2=4/k²-2
向量OA*向量OB=x1x2+y1y2=1+(kx1+k)(kx2+k)
=1+k²x1x2+k²x1+k²x2+k²
=1+k²+k²(x1+x2)+k²
=1+2k²+k²(4/k²-2)
=1+2k²+4-2k²=5
∴向量OA*向量OB是一个与k无关的常数
(2)
∵向量OM=向量OA+向量OB
两边平方得|OM|²=|OA|²+|OB|²+2倍的向量OA*向量OB
∴|OM|²=x1²+y1²+x2²+y2²+10
=x1²+4x1+x2²+4x2+10
=(x1+x2)²-2x1x2+4(x1+x2)+10
=(4/k²-2)²+4(4/k²-2)+8
=(4/k²-2+2)²+4
=16/k^4+4
∵方程k²x²+(2k²-4)x+k²=0 有实根
∴△>=0,即(2k²-4)²-4k²k²>=0
∴k²
看了高二数学题求助已知抛物线y^2...的网友还看了以下:
已知:如图1,点P在⊙O外,PC是⊙O的切线、切点为C,直线PO与⊙O相交于点A、B.(1)试探求 2020-04-12 …
向量与抛物线极值知抛物线y^=2px(p>0)上两点A(x1,y1)B(x2,y2)且y1y2<0 2020-05-14 …
已知抛物线y^2=2x,过(3,0)的直线交于抛物线a,b两点.求证:向量oa与向量ob的数量积为 2020-05-14 …
这是同位素吗O=C=O(1个O质量数为161个O质量数为18)O=O=O(1个O质量数为161个O 2020-07-18 …
刚刚升入高中,关于函数的问题那些幂函数应该怎么想想他的图像呢?就比如(设“o”为未知数)2º-o² 2020-07-18 …
数字计算问题·25524.56总金额,要得出单价和数量数量是整数,但是单价是有两位的小数点.能知道 2020-07-30 …
高二数学抛物线请详细解答,谢谢!(2317:10:7)求以抛物线3y^2=16x的顶点O,焦点F及 2020-07-31 …
S7-200系列的PLC的主机提供一定数量的数字量I/O和模拟量I/O,这些数字量I/O和模拟量I/ 2020-12-13 …
下面是花园超市上周四种饮料的销售情况.一周饮料销售情况统计表品牌ABCD数量/箱o少o少40o0(o 2020-12-30 …
已知抛物线的参数方程为x=2t2y=2t(t为参数),O为坐标原点,M为抛物线上一点,点M的横坐标是 2021-01-22 …