早教吧作业答案频道 -->其他-->
如图,圆心角120°的扇形OMN,绕着正六边形ABCDEF的中心O旋转,OM交AB于H,ON交CD于K,OM>OA.(1)证明:△AOH≌△COK;(2)若AB=2,求正六边形ABCDEF与扇形OMN重叠部分的面积.
题目详情

(1)证明:△AOH≌△COK;
(2)若AB=2,求正六边形ABCDEF与扇形OMN重叠部分的面积.
▼优质解答
答案和解析
(1)证明:∵圆心角120°的扇形OMN,绕着正六边形ABCDEF的中心O旋转,
∴△OBC,△OAB都是等边三角形,
∴AO=CO,∠1=∠2,∠3=∠4=60°,
在△AOH和△COK中
,
∴△AOH≌△COK(ASA);
(2)过点O作OG⊥BC于点G,
∵△OBC是等边三角形,
∴BG=CG=1,CO=2,
∴OG=
,
∵△AOH≌△COK,
∴S△AOH=S△COK,
∴正六边形ABCDEF与扇形OMN重叠部分的面积为:
S△AOB+S△OBC=2SOBC=2×
×2×
=2
.

∴△OBC,△OAB都是等边三角形,
∴AO=CO,∠1=∠2,∠3=∠4=60°,
在△AOH和△COK中
|
∴△AOH≌△COK(ASA);
(2)过点O作OG⊥BC于点G,
∵△OBC是等边三角形,
∴BG=CG=1,CO=2,
∴OG=
3 |
∵△AOH≌△COK,
∴S△AOH=S△COK,
∴正六边形ABCDEF与扇形OMN重叠部分的面积为:
S△AOB+S△OBC=2SOBC=2×
1 |
2 |
3 |
3 |
看了如图,圆心角120°的扇形OM...的网友还看了以下:
1.a≠0,b≠0,则a/|a|+b/|b|的不同取值的个数为()A.3B.2C.1D.02.若|x 2020-03-31 …
把460mg钠和480mg镁分别投到盛有等浓度、等体积稀硫酸的两个烧杯中(两烧杯质量相等)充分反应 2020-04-25 …
把你那题改下:a(n+2)=a(n+1)-2a(n),a1=1,a2=1.你在做一下.(我想这个没 2020-04-27 …
基本不等式超费解130已知a>b>0,求a2+1/(a*b)+1/[a*(a-b)]的最小值.a2 2020-05-13 …
设集合A={1,a,b},B={a,a^2,ab}且A=B,求实数A,B的值因为集合需要满足互异性 2020-05-15 …
假设集合A满足以下条件:诺a∈A,a不等于1,则1-a分之1属于A若a属于A,则1-a分之一属于A 2020-07-03 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
求证指数函数alogaN=N由公式log(a)(M^N)=Nlog(a)(M)得alogaN=lo 2020-07-19 …
12m分之1-m+n分之1×(2m分之m+n-m-n)2a^2-5a+6分之a^2-1÷a-3分之a 2020-12-09 …
递回关系式的运算公式(数列)以下是推导一个公式"a=a+r(1-p^n)/(1-p)"的过程a=p* 2021-01-13 …