早教吧作业答案频道 -->其他-->
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(0°<α<90°)(1)当α=60°时,求CE的长;(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为
题目详情
如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(0°<α<90°)

(1)当α=60°时,求CE的长;
(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为正整数),试猜想k的值,并证明你的猜想;
②在图2中,0°<α<60°,作CE⊥AB交BA的延长线于E,取BC中点G,连接FG,CF,直接写出∠EFD与∠DCF的等量关系.
(3)在图1中,当60°<α<90°时,当BE为多少时,CE2-CF2取最大,最大值为多少?

(1)当α=60°时,求CE的长;
(2)①在图1中,60°<α<90°,取BC中点G,连接FG,CF,∠EFD=k∠DCF(k为正整数),试猜想k的值,并证明你的猜想;
②在图2中,0°<α<60°,作CE⊥AB交BA的延长线于E,取BC中点G,连接FG,CF,直接写出∠EFD与∠DCF的等量关系.
(3)在图1中,当60°<α<90°时,当BE为多少时,CE2-CF2取最大,最大值为多少?
▼优质解答
答案和解析
(1)∵CE⊥AB,
∴∠CEB=90°,
∵∠B=60°,BC=10,
∴BE=
BC=5,
由勾股定理得:CE=
=5
;
(2)①k=3,
证明:如图,∵AB=5,BC=10,四边形ABCD是平行四边形,
∴AD=BC=10,DC=AB=5,AD∥BC,
∵F、G分别为AD、BC的中点,
∴DF=DC=CG=AF=BG=5,DF∥CG,
∴四边形ABGF和四边形CDFG是平行四边形,
∴FG∥AB∥CD,FG=CD=AB,
∵CE⊥AB,
∴FG⊥CE,
∵G为AB中点,
∴EQ=CQ,
∴EF=FC,
∴∠EFQ=∠CFG,
∵DF=DC=5,
∴∠DFC=∠DCF,
∵FG∥CD,
∴∠CFG=∠DCF,
即∠EFD=3∠DCF,
∴k=3;
②
由①知:∠CFG=∠EFG=∠DCF=∠DFC,
∵∠EFD+∠EFG+∠CFG+∠DFC=360°,
∴∠EFD+3∠DCF=360°;
(3)如图3,过A作AN⊥BC于N,过F作FM⊥BC于M,
∵AD∥BC,
∴AN=FM,AF=MN=5,
∵AN⊥BC,CE⊥AB,
∴∠ANB=∠CEB=90°
∵∠B=∠B,
∴△ANB∽△CEB,
∴
=
=
,
∴BN=
BE=
x,
在Rt△ANB中,由勾股定理得:AN2=FM2=52-(
x)2,
CM=BC-AF-BN=10-5-
x=5-
x,
∴CE2-CF2=(102-x2)-[52-(
x)2+(5-
x)2]=-x2+5x+50,
当x=-
=
时,CE2-CF2取最大值,是
.
∴∠CEB=90°,
∵∠B=60°,BC=10,
∴BE=
1 |
2 |
由勾股定理得:CE=
102−52 |
3 |
(2)①k=3,
证明:如图,∵AB=5,BC=10,四边形ABCD是平行四边形,
∴AD=BC=10,DC=AB=5,AD∥BC,
∵F、G分别为AD、BC的中点,
∴DF=DC=CG=AF=BG=5,DF∥CG,
∴四边形ABGF和四边形CDFG是平行四边形,
∴FG∥AB∥CD,FG=CD=AB,
∵CE⊥AB,
∴FG⊥CE,
∵G为AB中点,
∴EQ=CQ,
∴EF=FC,
∴∠EFQ=∠CFG,
∵DF=DC=5,
∴∠DFC=∠DCF,
∵FG∥CD,
∴∠CFG=∠DCF,
即∠EFD=3∠DCF,

∴k=3;
②

由①知:∠CFG=∠EFG=∠DCF=∠DFC,
∵∠EFD+∠EFG+∠CFG+∠DFC=360°,
∴∠EFD+3∠DCF=360°;

(3)如图3,过A作AN⊥BC于N,过F作FM⊥BC于M,
∵AD∥BC,
∴AN=FM,AF=MN=5,
∵AN⊥BC,CE⊥AB,
∴∠ANB=∠CEB=90°
∵∠B=∠B,
∴△ANB∽△CEB,
∴
AB |
BC |
BN |
BE |
5 |
10 |
∴BN=
1 |
2 |
1 |
2 |
在Rt△ANB中,由勾股定理得:AN2=FM2=52-(
1 |
2 |
CM=BC-AF-BN=10-5-
1 |
2 |
1 |
2 |
∴CE2-CF2=(102-x2)-[52-(
1 |
2 |
1 |
2 |
当x=-
5 |
2×(−1) |
5 |
2 |
225 |
4 |
看了如图,在平行四边形ABCD中,...的网友还看了以下:
大一高数--导数在下列各题中均假定f'(x)存在,按照导数的定义观察下列极限,分析并指出A的具体含 2020-05-17 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
设f(x)=ax2bxc,满足f(a1)=0,f(a2)=0,f(a3)=1,(其中:a1,a2, 2020-07-09 …
设f(x)=ax2+bx-c,满足f(a1)=0,f(a2)=0,f(a3)=1,(其中:a1,a 2020-07-09 …
设函数f(x)在x=0处可导,且f(0)=0,求下列极限,其中a不等于0,为常数limx→0[f( 2020-07-16 …
设函数f(x)=a1sin(x+a1)+a2sin(x+a2)+.+ansin(x+an),其中a 2020-07-18 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
已知函数f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2-2x.(Ⅰ)求f(0)及f(f 2020-08-01 …
为什么[f(x)+f(-x)]/x在x趋于0时极限存在就能推出f(x)在x趋于0时的极限为0?前提是 2020-12-27 …