早教吧作业答案频道 -->其他-->
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x)是回旋函数,且阶数为a.(Ⅰ)试判断函数f(x)=x2是否是一个回旋函数;(Ⅱ
题目详情
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x)是回旋函数,且阶数为a.
(Ⅰ)试判断函数f(x)=x2是否是一个回旋函数;
(Ⅱ)已知f(x)=sinωx是回旋函数,求实数ω的值;
(Ⅲ)若对任意一个阶数为a的回旋函数f(x),方程f(x)=0均有实数根,求a的取值范围.
(Ⅰ)试判断函数f(x)=x2是否是一个回旋函数;
(Ⅱ)已知f(x)=sinωx是回旋函数,求实数ω的值;
(Ⅲ)若对任意一个阶数为a的回旋函数f(x),方程f(x)=0均有实数根,求a的取值范围.
▼优质解答
答案和解析
(Ⅰ)若(x+a)2+ax2=0对任意实数都成立,令x=0,则必须有a=0
令x=1,则有a2+3a+1=0,显然a=0不是这个方程的解故假设不成立,该函数不是回旋函数.
(Ⅱ)由于f(x)=sinwx是回旋函数,故有:sinw(x+a)+asinwx=0对任意实数x成立
令x=0,可得sinwa=0,令x=
,可得coswa=-a,故a=±1,w=kπ(k为整数)
(Ⅲ)如果a=0,显然f(x)=0,则显然有实根.
下面考虑a≠0的情况.
若存在实根x0,则f(x0+a)+af(x0)=0,即f(x0+a)=0说明实根如果存在,那么加a也是实根.因此在区间(0,a)上必有一个实根.则:f(0)f(a)<0
由于f(0+a)+af(0)=0,则f(0)=
,只要a>0,即可保证f(0)和f(a)异号.
综上a≥0
令x=1,则有a2+3a+1=0,显然a=0不是这个方程的解故假设不成立,该函数不是回旋函数.
(Ⅱ)由于f(x)=sinwx是回旋函数,故有:sinw(x+a)+asinwx=0对任意实数x成立
令x=0,可得sinwa=0,令x=
| π |
| 2 |
(Ⅲ)如果a=0,显然f(x)=0,则显然有实根.
下面考虑a≠0的情况.
若存在实根x0,则f(x0+a)+af(x0)=0,即f(x0+a)=0说明实根如果存在,那么加a也是实根.因此在区间(0,a)上必有一个实根.则:f(0)f(a)<0
由于f(0+a)+af(0)=0,则f(0)=
| −f(a) |
| a |
综上a≥0
看了若对于定义在R上的连续函数f(...的网友还看了以下:
以下与十进制数0.625等价.(A)二进制数0.101(B)二进制数0.11(C)十六进制数0.5( 2020-03-30 …
函数在0到1的闭区间内二阶导数大于0选择:a.f'(1)>f'(0)>f(1)—f(0)b.f'( 2020-05-16 …
关于奇函数的问题,已知f(x+1)是定义域在R上的奇函数,则f(x+1)的对称中心是什么?f(x) 2020-06-09 …
我们知道分数13写为小数即0.•3;反之,无限循环小数0.•3写成分数即13.一般地,任何一个无限 2020-06-27 …
设函数f(x)在x=0处可导,且f(0)=0,求下列极限,其中a不等于0,为常数limx→0[f( 2020-07-16 …
(x,y)=(0,0)时,g(x,y)=0,它的二阶导数gyx(0,0)和gxy(0,0)等于多少 2020-08-01 …
0次幂的疑惑例如:自然数2的次数是0.2的0次方是1.自然数2怎么会等于1呢?请高手赐教.自然数2的 2020-11-18 …
某校对七年级(5)班男生进行100m短跑测试,以12.5s为测试达标标准,超过的秒数数用正数表示,不 2020-11-26 …
谁都会的,看看你们会不小数化成分数~0.25=0.14=0.36=0.15=0.27=0.45=2. 2020-12-13 …
两数相处的商是5.3,余数是0.3,如果被除数和除数都缩小10倍,它们的商和余数变不变()求理由?列 2021-01-16 …