早教吧作业答案频道 -->数学-->
已知焦点在x轴上的椭圆E:x^2/4+y^2/b^2=1,离心率e=√3/2,直线l:x=my+1与椭圆E相交于不同的两点A、B.(2)在x轴上是否存在点M,使得直线MA与直线MB生物斜率之积为定值.若存在,求出点M的坐标;若不
题目详情
已知焦点在x轴上的椭圆E:x^2/4+y^2/b^2=1,离心率e=√3/2,直线l:x=my+1与椭圆E相交于不同的两点A、B.
(2)在x轴上是否存在点M,使得直线MA与直线MB生物斜率之积为定值.若存在,求出点M的坐标;若不存在,请说明理由.
(2)在x轴上是否存在点M,使得直线MA与直线MB生物斜率之积为定值.若存在,求出点M的坐标;若不存在,请说明理由.
▼优质解答
答案和解析
椭圆方程是:x²/4+y²=1,即:x²+4y²=4
将直线x=my+1代入椭圆,得:
(m²+4)y²+2my-3=0
设:A(x1,y1)、B(x2,y2),则:
y+y2=-(2m)/(m²+4);y1y1=-3/(m²+4)
设:M(t,0),则:
AM的斜率是k1=(y1)/(x1-t)
BM的斜率是k2=(y2)/(x2-t)
k1k1=(y1y2)/[(x1-t)(x2-t)]=(y1y2)/{[my1+1-t]×[my2+1-t]}
而:(my1+1-t)(my2+1-t)=m²(y1y2)+(1-t)m(y1+y2)+(1-t)²
代入,化简得:
k1k1=(-3)/{[(1-t)²-2(1-t)-3]m²+4(1-t)²}
要使得这个值与m无关,则:
(1-t)²-2(1-t)-3=0
得:t=±2
也就是说,在x轴上的定点是:M(±2,0)
将直线x=my+1代入椭圆,得:
(m²+4)y²+2my-3=0
设:A(x1,y1)、B(x2,y2),则:
y+y2=-(2m)/(m²+4);y1y1=-3/(m²+4)
设:M(t,0),则:
AM的斜率是k1=(y1)/(x1-t)
BM的斜率是k2=(y2)/(x2-t)
k1k1=(y1y2)/[(x1-t)(x2-t)]=(y1y2)/{[my1+1-t]×[my2+1-t]}
而:(my1+1-t)(my2+1-t)=m²(y1y2)+(1-t)m(y1+y2)+(1-t)²
代入,化简得:
k1k1=(-3)/{[(1-t)²-2(1-t)-3]m²+4(1-t)²}
要使得这个值与m无关,则:
(1-t)²-2(1-t)-3=0
得:t=±2
也就是说,在x轴上的定点是:M(±2,0)
看了已知焦点在x轴上的椭圆E:x^...的网友还看了以下:
如图,正方形CDEF内接于椭圆,且它的四条边与坐标轴平行,正方形GHPQ的顶点G,H在椭圆上,顶点 2020-05-15 …
如图,已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍,椭圆经过点M(2,1),平行于OM 2020-05-16 …
设,分别是椭圆的左右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.(1)若直线MN的斜 2020-06-12 …
设F1,F2分别是椭圆C:x²/a²+y²/b²=1a>b>0)的左右焦点,M是C上一点且MF2与 2020-06-16 …
如图,已知椭圆x2a2+y2b2=1(a>b>0)的离心率为32,且经过点M(2,1)平行于OM的 2020-06-21 …
(2012•洛阳一模)如图,已知椭圆的中心在原点,焦点在x轴上,离心率为32,且经过点M(2,1) 2020-06-21 …
一道椭圆题目中存在一个小问题,请解析~谢啦已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍 2020-06-30 …
已知椭圆E的中心在坐标原点O,焦点在坐标轴上,且经过两点.(1)求椭圆E的方程;(2)若平行于OM 2020-07-24 …
设离心率e=12的椭圆M:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,P是x 2020-07-31 …
设F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左右焦点,M是椭圆C上一点,且直线M 2020-10-31 …