早教吧作业答案频道 -->数学-->
如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥AC于F,EG⊥AD于G.(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;(2)
题目详情
如图,△ABC中,AC>AB,D是BA延长线上一点,点E是∠CAD平分线上一点,EB=EC过点E作EF⊥
AC于F,EG⊥AD于G.
(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;
(2)若AB=3,AC=5,求AF的长.

(1)请你在不添加辅助线的情况下找出一对你认为全等的三角形,并加以证明;
(2)若AB=3,AC=5,求AF的长.
▼优质解答
答案和解析
(1)△EGA≌△EFA(或△EGB≌△EFC).
证明:∵AE平分∠CAD,
∴∠EAG=∠EAF.
又∵EF⊥AC,EG⊥AD,
∴∠EGA=∠EFA=90°.
在△AEG和△EFA中:
∠EAG=∠EAF,∠EGA=∠EFA,AE=AE,
∴△EGA≌△EFA(AAS).
证明:(2)∵AE平分∠CAD且EF⊥AC,EG⊥AD,
∴EG=EF,∠EGB=∠EFC=90°.
在Rt△EGB和Rt△EFC中
.
∴Rt△EGB≌Rt△EFC(HL).
∴BG=CF.(10分)
又∵BG=AB+AG,CF=AC-AF,
即AB+AG=AC-AF,
又∵△EGA≌△EFA,
∴AG=AF.
∴2AF=AC-AB=5-3=2.
∴AF=1.
证明:∵AE平分∠CAD,
∴∠EAG=∠EAF.
又∵EF⊥AC,EG⊥AD,
∴∠EGA=∠EFA=90°.
在△AEG和△EFA中:
∠EAG=∠EAF,∠EGA=∠EFA,AE=AE,
∴△EGA≌△EFA(AAS).
证明:(2)∵AE平分∠CAD且EF⊥AC,EG⊥AD,
∴EG=EF,∠EGB=∠EFC=90°.
在Rt△EGB和Rt△EFC中
|
∴Rt△EGB≌Rt△EFC(HL).
∴BG=CF.(10分)
又∵BG=AB+AG,CF=AC-AF,
即AB+AG=AC-AF,
又∵△EGA≌△EFA,
∴AG=AF.
∴2AF=AC-AB=5-3=2.
∴AF=1.
看了如图,△ABC中,AC>AB,...的网友还看了以下:
曲线C:ρ2-2ρcosθ-8=0曲线E:x=t+2y=kt+1(t是参数)(1)求曲线C的普通方 2020-04-13 …
下图中AB、CD为两条纬线,B、C、E位于同一经线上,A、E、D为晨昏线上的三点,此时太阳高度为0 2020-04-27 …
一道圆锥曲线,已知曲线C的方程为y^2=4x(x>0),曲线E是以F1(-1,0)、F(1,0)为 2020-05-15 …
已知曲线C的方程为y2=4x(x>0),曲线E是以F1(-1,0)、F2(1,0)为焦点的椭圆,点 2020-05-15 …
已知圆C:(x+1)2+y2=8,过D(1,0)且与圆C相切的动圆圆心为P,(1)求点P的轨迹E的 2020-07-26 …
直线a,b是异面直线,A,B,C为直线a上三点,D,E,F是直线b上三点,A',B',C',D', 2020-07-31 …
在三角形ABC中,角A角B的平分线分别交对边于D,E角C的外角平分线交对边延长线于F,求证:D、E 2020-08-03 …
已知点M(-1,0),N(1,0),曲线E上任意一点到M的距离均是到点N距离的3倍.(1)求曲线E的 2020-11-27 …
求通达信公式:任意一个价位乘以固定数值的公式!假如有3个任意价位A.B.C有固定数值a.b.c.d. 2020-12-23 …
双曲线x^2/a^2-y^2/b^2=1(a>O,b>0)的右支上存在一点,它到右焦点及左准线(x= 2020-12-31 …