早教吧作业答案频道 -->数学-->
正三角形ABC内接于圆O,M、N分别是AB、AC的中点,延长MN交圆O于F,连接BF交AC于点P,则PC/PA=?不必有图,
题目详情
正三角形ABC内接于圆O,M、N分别是AB、AC的中点,延长MN交圆O于F,连接BF交AC于点P,则PC/PA=?
不必有图,
不必有图,
▼优质解答
答案和解析
设外接圆圆心为O,延长MN交⊙O于D.
并设正△ABC边长为1.
MN是△ABC的中位线,MN‖BC,MN=1/2BC=1/2.
连结BN,则BN必过圆心O,连结OC.设外接圆半径为R.
BN=√(BC²-CN²)=√(1-1/4)=√3/2.
RT△ONC中:OC²=ON²+CN²
R²=(√3/2- R) ²+1/4, R=√3/3.
从而OB=R=√3/3. ON=BN-OB=√3/2-√3/3=√3/6.
过O作OE⊥MN,E为垂足,
OE=√(ON²-EN²)=√(ON²-1/4MN²)=√(1/12-1/16)= √3/12.
从而ED=√(OD²-OE²)=√(R²-OE²)=√(1/3-3/144)=√5/4.
ND=ED-EN=√5/4-1/4=(√5-1)/4.
由MN‖BC知,PC/PN=BC/ND=1/((√5-1)/4)= √5+1.
∴PC/CN=(√5+1)/ (√5+2)=3-√5.
∵CN=1/2, ∴PC=(3-√5)/2.
∴PC/PA=[(3-√5)/2]/[1-(3-√5)/2]= (3-√5)/(√5-1)= (√5-1)/2
并设正△ABC边长为1.
MN是△ABC的中位线,MN‖BC,MN=1/2BC=1/2.
连结BN,则BN必过圆心O,连结OC.设外接圆半径为R.
BN=√(BC²-CN²)=√(1-1/4)=√3/2.
RT△ONC中:OC²=ON²+CN²
R²=(√3/2- R) ²+1/4, R=√3/3.
从而OB=R=√3/3. ON=BN-OB=√3/2-√3/3=√3/6.
过O作OE⊥MN,E为垂足,
OE=√(ON²-EN²)=√(ON²-1/4MN²)=√(1/12-1/16)= √3/12.
从而ED=√(OD²-OE²)=√(R²-OE²)=√(1/3-3/144)=√5/4.
ND=ED-EN=√5/4-1/4=(√5-1)/4.
由MN‖BC知,PC/PN=BC/ND=1/((√5-1)/4)= √5+1.
∴PC/CN=(√5+1)/ (√5+2)=3-√5.
∵CN=1/2, ∴PC=(3-√5)/2.
∴PC/PA=[(3-√5)/2]/[1-(3-√5)/2]= (3-√5)/(√5-1)= (√5-1)/2
看了正三角形ABC内接于圆O,M、...的网友还看了以下:
1.已有定义inta[10],*p;则正确的赋值语句是().A.p=100;B.p=a[5];C.p 2020-03-31 …
已知:inta[]={1,2,3,4,5,6,7,8,9,10,11,12},*p=a则值为3的表 2020-05-13 …
关于语言的几道题18.已知int a,*p=&a;则函数调用中错误的是().A) scanf(“% 2020-05-17 …
概率论的一个题~已知P(AB)=P(A)则P(A-AB)=0以上确实成立是新东方去年考研班的一道题 2020-05-20 …
若有说明:inta[]={15,12,-9,28,5,3},*P=a;则下列表达是错误的是A*(a 2020-06-07 …
点P(-3,0)是圆x^2+y^2-6x-55=0内一定点,动圆M与已知圆相内切,且过P点,则圆心 2020-06-15 …
inta[]={1,2,3,4};int*p=a;则下面哪项正确表示数组元素的地址:(A)&(a+ 2020-07-30 …
设A为集合,P(A)为A的幂集,则〈P(A),〉是格,若x,y∈P(A),则x,y最大下界是,最小 2020-07-31 …
哪位大侠能帮忙下.C语言的作业、.19.若有以下说明:inta[10]={1,2,3,4,5,6,7 2020-11-01 …
*p=a不能表示为*(p+0)+0吗还是a不能表示为a+0+01.已知inta[3][4],*p=a 2020-12-09 …