早教吧作业答案频道 -->数学-->
正三角形ABC内接于圆O,M、N分别是AB、AC的中点,延长MN交圆O于F,连接BF交AC于点P,则PC/PA=?不必有图,
题目详情
正三角形ABC内接于圆O,M、N分别是AB、AC的中点,延长MN交圆O于F,连接BF交AC于点P,则PC/PA=?
不必有图,
不必有图,
▼优质解答
答案和解析
设外接圆圆心为O,延长MN交⊙O于D.
并设正△ABC边长为1.
MN是△ABC的中位线,MN‖BC,MN=1/2BC=1/2.
连结BN,则BN必过圆心O,连结OC.设外接圆半径为R.
BN=√(BC²-CN²)=√(1-1/4)=√3/2.
RT△ONC中:OC²=ON²+CN²
R²=(√3/2- R) ²+1/4, R=√3/3.
从而OB=R=√3/3. ON=BN-OB=√3/2-√3/3=√3/6.
过O作OE⊥MN,E为垂足,
OE=√(ON²-EN²)=√(ON²-1/4MN²)=√(1/12-1/16)= √3/12.
从而ED=√(OD²-OE²)=√(R²-OE²)=√(1/3-3/144)=√5/4.
ND=ED-EN=√5/4-1/4=(√5-1)/4.
由MN‖BC知,PC/PN=BC/ND=1/((√5-1)/4)= √5+1.
∴PC/CN=(√5+1)/ (√5+2)=3-√5.
∵CN=1/2, ∴PC=(3-√5)/2.
∴PC/PA=[(3-√5)/2]/[1-(3-√5)/2]= (3-√5)/(√5-1)= (√5-1)/2
并设正△ABC边长为1.
MN是△ABC的中位线,MN‖BC,MN=1/2BC=1/2.
连结BN,则BN必过圆心O,连结OC.设外接圆半径为R.
BN=√(BC²-CN²)=√(1-1/4)=√3/2.
RT△ONC中:OC²=ON²+CN²
R²=(√3/2- R) ²+1/4, R=√3/3.
从而OB=R=√3/3. ON=BN-OB=√3/2-√3/3=√3/6.
过O作OE⊥MN,E为垂足,
OE=√(ON²-EN²)=√(ON²-1/4MN²)=√(1/12-1/16)= √3/12.
从而ED=√(OD²-OE²)=√(R²-OE²)=√(1/3-3/144)=√5/4.
ND=ED-EN=√5/4-1/4=(√5-1)/4.
由MN‖BC知,PC/PN=BC/ND=1/((√5-1)/4)= √5+1.
∴PC/CN=(√5+1)/ (√5+2)=3-√5.
∵CN=1/2, ∴PC=(3-√5)/2.
∴PC/PA=[(3-√5)/2]/[1-(3-√5)/2]= (3-√5)/(√5-1)= (√5-1)/2
看了正三角形ABC内接于圆O,M、...的网友还看了以下:
(2少12•峨边县5模)现有A、B、C三种金属,C能与稀盐酸反应放出氢气,而A、B不能;把A放在B 2020-05-14 …
定义:如果一元二次方程 ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤 2020-05-15 …
求问,有这么一个公式吗幂指的排序不等式不妨设a>b>c>0,则a^a×b^b×c^c>a^b×b^ 2020-05-16 …
现有A、B、C、D四种物质,A、B为无色气体,C、D为黑色粉末,B跟D在一定条件下生成A,A和D都 2020-05-17 …
有A,B,C,D,E五中物质,在常温下A,B,C是气体有A、B、C、D、E五种物质,在常温下A、B 2020-05-20 …
已知有理数a.b.c.在数轴上的位置如图所示,|a|=|b|1.a+b与a/b的值;2.c-a/c 2020-06-03 …
如图所示,有a、b、c三个铁块悬挂空中,当a与b靠近时相互吸引,b与c靠近时相互排斥,下列判断中, 2020-06-16 …
有A、B、C三本书,至少读过其中一本的有20人,读过A书的有10人,读过B书的有12人,读过C书的 2020-07-08 …
1.已知a+b+c=0,a^2+b^2+c^=1,求:①ab+bc+ac的值②a^4+b^4+c^ 2020-07-09 …
Inta=3,b=5,c=7;If(a>b)a=b;c=a;If(c!=a)c=b;Printf( 2020-07-09 …