早教吧作业答案频道 -->数学-->
已知:如图,矩形ABCD中,BC延长线上一点E满足BE=BD,F是DE的中点,猜想∠AFC的度数并证明你的结论.答:∠AFC=°.证明:
题目详情

▼优质解答
答案和解析
∠AFC=90°,
证明:连接BF,如图所示:
∵矩形ABCD,
∴∠ADC=∠DCB=90°,AD=BC,
在Rt△CDE中,F是DE的中点,
∴DF=CF=FE,
∴∠1=∠2,
∴∠ADC+∠1=∠DCB+∠2,
即∠ADF=BCF,
在△ADF与△BCF中,
∵
,
∴△ADF≌△BCF,
∴∠3=∠4,
∵BE=BD,DF=FE,
∴BF⊥DE,
∴∠3+∠5=90°,
∴∠4+∠5=90°,即∠AFC=90°.
AD=BC AD=BC AD=BC∠ADF=∠BCF ∠ADF=∠BCF ∠ADF=∠BCFDF=CF DF=CF DF=CF ,
∴△ADF≌△BCF,
∴∠3=∠4,
∵BE=BD,DF=FE,
∴BF⊥DE,
∴∠3+∠5=90°,
∴∠4+∠5=90°,即∠AFC=90°.

证明:连接BF,如图所示:
∵矩形ABCD,
∴∠ADC=∠DCB=90°,AD=BC,
在Rt△CDE中,F是DE的中点,
∴DF=CF=FE,
∴∠1=∠2,
∴∠ADC+∠1=∠DCB+∠2,
即∠ADF=BCF,
在△ADF与△BCF中,
∵
|
∴△ADF≌△BCF,
∴∠3=∠4,
∵BE=BD,DF=FE,
∴BF⊥DE,
∴∠3+∠5=90°,
∴∠4+∠5=90°,即∠AFC=90°.
|
AD=BC |
∠ADF=∠BCF |
DF=CF |
AD=BC |
∠ADF=∠BCF |
DF=CF |
AD=BC |
∠ADF=∠BCF |
DF=CF |
∴△ADF≌△BCF,
∴∠3=∠4,
∵BE=BD,DF=FE,
∴BF⊥DE,
∴∠3+∠5=90°,
∴∠4+∠5=90°,即∠AFC=90°.
看了已知:如图,矩形ABCD中,B...的网友还看了以下:
曲线C上任一点到点F1(-4,0),F2(4,0)的距离之和为12.曲线C的左顶点为A,点P在曲线 2020-05-15 …
已知曲线C的极坐标方程ρ=2,给定两点P(0,π/2),Q(-2,π),则有()A.P在曲线C上, 2020-05-15 …
已知椭圆C的中心在坐标原点,焦点F1,F2在x轴上,焦距为2,并且椭圆C上...已知椭圆C的中心在 2020-05-15 …
曲线C:y^2=x+1和定点A(3,1),B为曲线C上任意点.若AP向量=2倍的PB向量,当点B在 2020-05-16 …
物体A叠放在物体B上,物体B叠放在物体C上,ABC之间与地面之间的摩擦力关系?RT,物体A叠放在物 2020-05-17 …
已知坐标满足方程F(x,y)=0的点都在曲线C上,那么()A.曲线C上的点的坐标都适合方程F(x, 2020-06-14 …
有机化学求助C上三个H伯碳C上两个H仲碳C上一个H叔碳C上没有H季碳C上四个H是什么?碳叫什么碳 2020-06-17 …
如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上 2020-07-02 …
如图,“中海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛瞧C上的 2020-07-02 …
椭圆C:X^2+2Y^2=100.1)设M(t,0)若P在C上,求丨PM丨最小值2)点P在C上,求P 2020-10-31 …