早教吧作业答案频道 -->数学-->
如图在平面直角坐标系中点C在x的正半轴上,点A在y轴正半轴上,且OA=7,OC=18现将点C向上平移7个单位长度再向左平移4个单位长度,得到对应点B.(1)求图1中点B的坐标及四边形ABCO的面积(求B点坐
题目详情
如图在平面直角坐标系中点C在x的正半轴上,点A在y轴正半轴上,且OA=7,OC=18现将点C向上平移7个单位长度再向左平移4个单位长度,得到对应点B.
(1)求图1中点B的坐标及四边形ABCO的面积 (求B点坐标的过程写出来)
向左转|向右转
(2)若点P从点C以2个单位长度/秒的速度沿OC方向移动,同时点Q从点O以每秒1个长度单位的速度沿OA方向移动(如图二)设移动时间为t秒(0<t<7),四边形OPBA与ΔOQB的面积分别记为S四边形OPBA,
SΔOQP.是否在一段时间使 S四边形OPBA/2<SΔOQP,若存在求出t的取值范围,若不存在,试说明理由
向左转|向右转
(3)在(2)的条件下,连接QP交OB于D(如图三),下列结论只有一个是正确的,找出这个结论加以说明.①S四边形OPBA的值不变 ②BD-OD的值不变
向左转|向右转
(1)求图1中点B的坐标及四边形ABCO的面积 (求B点坐标的过程写出来)
向左转|向右转
(2)若点P从点C以2个单位长度/秒的速度沿OC方向移动,同时点Q从点O以每秒1个长度单位的速度沿OA方向移动(如图二)设移动时间为t秒(0<t<7),四边形OPBA与ΔOQB的面积分别记为S四边形OPBA,
SΔOQP.是否在一段时间使 S四边形OPBA/2<SΔOQP,若存在求出t的取值范围,若不存在,试说明理由
向左转|向右转
(3)在(2)的条件下,连接QP交OB于D(如图三),下列结论只有一个是正确的,找出这个结论加以说明.①S四边形OPBA的值不变 ②BD-OD的值不变
向左转|向右转
▼优质解答
答案和解析
1)A点坐标(0,7);C点坐标(18,0)
B点坐标X=18-4=14,Y=7,则B点坐标(14,7);
四边形ABCO为直角梯形,面积=(AB+OC)*OA/2=(14+18)*7/2=112
2)OP=18-2t,OQ=t
四边形OPBA面积=(AB+OP)*OA/2=(14+18-2t)*7/2=112-7t
ΔOQB的面积=OQ*AB/2=t*14/2=7t
ΔOQP的面积=OQ*AP/2=t*(18-2t)/2=9t-t2
求S四边形OPBA/2<SΔOQP,即(112-7t)/2<9t-t2
即112-7t<18t-2t2,2t2-25t+112<0
又因为Δ=b²-4ac=25*25-4*2*112
B点坐标X=18-4=14,Y=7,则B点坐标(14,7);
四边形ABCO为直角梯形,面积=(AB+OC)*OA/2=(14+18)*7/2=112
2)OP=18-2t,OQ=t
四边形OPBA面积=(AB+OP)*OA/2=(14+18-2t)*7/2=112-7t
ΔOQB的面积=OQ*AB/2=t*14/2=7t
ΔOQP的面积=OQ*AP/2=t*(18-2t)/2=9t-t2
求S四边形OPBA/2<SΔOQP,即(112-7t)/2<9t-t2
即112-7t<18t-2t2,2t2-25t+112<0
又因为Δ=b²-4ac=25*25-4*2*112
看了如图在平面直角坐标系中点C在x...的网友还看了以下:
求惊喜的发现这篇作文,400字左右..7点前,越快越好GG们 2020-05-13 …
我是82年5月29早上7点左右生的,应该是7点以后吧,因为我妈说我生下来后,洗干净包好后看表是7点 2020-05-16 …
书面表达。根据提示要求,以第一人称写一篇短文,字数50个词左右.5月20日晚7点到9点将有一场义演 2020-06-21 …
将函数g(x)=3sin(2x+π6)图象上所有点向左平移π6个单位,再将各点横坐标缩短为原来的1 2020-07-15 …
已知椭圆x^2/16+y^2/7=1及点M(2,1),F1,F2分别是椭圆的左右焦点,A是椭圆上的 2020-07-17 …
帮我翻译成英语其中一次发生在7月30日上午7点左右,另一次发生在7月31日14点左右.我的数据库中很 2020-10-30 …
已知AB∥CD,点E、F分别在AB、CD上,线段EF可左右平移.(1)如图1,当点E与点A重合时,求 2020-11-03 …
在直角坐标系中,描出点(9,1)(11,6)(16,8)(11,10)(7,10)(2,8)(7,6 2020-11-10 …
桂花的样子(文字表达),桂花代表什么,全国有多少个城市以桂花为市花,最后讲描写桂花的古诗名称.不用太 2020-12-08 …
在数学的零点分段法中,零点什么时候该单独取出来呢?以前都是将零点划分在零点左或右的区间中,但今天做了 2020-12-26 …