早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}中,a1=1,a(n+1)=(2/an)+1(n∈N*),设bn=1/(1+an)(1)求数列{bn}的通项公式(2)求证b1+b2+…+bn≥(1/3)(n+1/4)(n∈N*)

题目详情


▼优质解答
答案和解析
1+a(n+1)=2(1+an)/an,
1/(1+a(n+1))=an/(2(an+1)) ,
2b(n+1)=1-bn,
2(b(n+1)-1/3)=-(bn-1/3)
bn=[1-(-1/2)^n]/3.
b1+b2+b3+~~~+bn=n/3-(-1/2)[1-(-1/2)^n]/(1+1/2)=(1/3)[n+1-(-1/2)^n]≥(1/3)(n+1/4)