早教吧 育儿知识 作业答案 考试题库 百科 知识分享

各项均为正数的数列{an}的前n项和Sn满足2Sn=an2+an(n∈N*),等比数列{bn}满足b1=12,bn+1+bn=32n+1(n∈N*).(Ⅰ)求数列{an}、{bn}的通项公式;(Ⅱ)若i,j为正整数,且1≤i≤j≤n,求所有可能

题目详情
各项均为正数的数列{an}的前n项和Sn满足2Sn=an2+an(n∈N*),等比数列{bn}满足b1=
1
2
,bn+1+bn=
3
2n+1
(n∈N*).
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)若i,j为正整数,且1≤i≤j≤n,求所有可能的乘积aibj的和.
▼优质解答
答案和解析
(I)∵各项均为正数的数列{an}的前n项和Sn满足2Sn=an2+an(n∈N*),
∴n=1时,2a1=
a
2
1
+a1,解得a1=1.
当n≥2时,2an=2(Sn-Sn-1)=an2+an-(
a
2
n−1
+an−1),
化为(an+an-1)(an-an-1-1)=0,
∴an-an-1=1.
∴数列{an}是等差数列,
∴an=1+(n-1)×1=n.
∵等比数列{bn}满足b1=
1
2
,bn+1+bn=
3
2n+1
(n∈N*).
设公比为q,则
1
2
q+
1
2
=
3
4

解得q=
1
2

bn=
1
2n

(II)∵i,j为正整数,且1≤i≤j≤n,
所有可能的乘积aibj的和=a1
n
j=1
bj+a2
n
k=2
bk+…+an−1
n
l=n−1
bn−1+anbn
=
1
2
(1−
1
2n
)
1−
1
2
+
1
4
(1−
1
2n−1
)
1−
1
2
+…+(n−1)(
1
2n−1
+
1
2n
)+
n
2n

=1-
1
2n
+2(
1
2
1
2n
)+3(
1
22
1
2n
)+…+(n-1)(
1
2n−2
1
2n
)+n(
1
2n−1
1
2n
)
=(1+
2
2
+
3
22
+…+
n
2n−1
)-
1
2n
(1+2+…+n),
令Sn=1+
2
2
+
3
22
+…+
n
2n−1

1
2
Sn=
1
2
+
2
22
+…+
n−1
2n−1
+
n
2n

1
2
Sn=1+
1
2
+
1
22
+
1
23
+…+
1
2n−1
-
n
2n
=1+
1
2
+
1
22
+
1
23
+…+
1
2n−1
-
n
2n
=
1−
1
2n
1−
1
2
-
n
2n
=2−
n+2
2n

∴Sn=4-
n+2
2n−1

∴所有可能的乘积aibj的和=4-
n+2
2n−1
-
n(n+1)
2n+1
=4-
n2+5n+8
2n+1