早教吧作业答案频道 -->其他-->
已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.(Ⅰ)求an;(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;(ii)当n≥2时,比较bn-1•bn+1与bn2的大
题目详情
已知等差数列{an}的前n项和为Sn,且满足Sn=n2-n.
(Ⅰ)求an;
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.
(Ⅰ)求an;
(Ⅱ)设数列{bn}满足bn+1=2bn-an且b1=4,
(i)证明:数列{bn-2n}是等比数列,并求{bn}的通项;
(ii)当n≥2时,比较bn-1•bn+1与bn2的大小.
▼优质解答
答案和解析
(Ⅰ)∵Sn=n2-n,
∴当n=1时,a1=S1=0,
当n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
∵n=1时满足上式,
∴an=2n-2.
(Ⅱ)(i)证明:由已知得bn+1=2bn-2n+2,
即bn+1-2(n+1)=2(bn-2n),且b1-2=2,
∴数列{bn-2n}是以2为首项,2为公比的等比数列,
则bn−2n=2n,∴bn=2n+2n.
(ii)当n≥2时,∵bn−1•bn+1−bn2
=[2n-1+2(n-1)]•[2n+1+2(n+1)]-(2n+2n)2
=22n+2n(n+1)+2n×4(n-1)+4(n2-1)-(22n+4n×2n+4n2)
=2n(n-3)-4,
∴当n=2或n=3时,bn−1•bn+1<bn2,
当n≥4时,bn−1•bn+1>bn2.
∴当n=1时,a1=S1=0,
当n≥2时,an=Sn-Sn-1=n2-n-[(n-1)2-(n-1)]=2n-2,
∵n=1时满足上式,
∴an=2n-2.
(Ⅱ)(i)证明:由已知得bn+1=2bn-2n+2,
即bn+1-2(n+1)=2(bn-2n),且b1-2=2,
∴数列{bn-2n}是以2为首项,2为公比的等比数列,
则bn−2n=2n,∴bn=2n+2n.
(ii)当n≥2时,∵bn−1•bn+1−bn2
=[2n-1+2(n-1)]•[2n+1+2(n+1)]-(2n+2n)2
=22n+2n(n+1)+2n×4(n-1)+4(n2-1)-(22n+4n×2n+4n2)
=2n(n-3)-4,
∴当n=2或n=3时,bn−1•bn+1<bn2,
当n≥4时,bn−1•bn+1>bn2.
看了已知等差数列{an}的前n项和...的网友还看了以下:
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
(1/2)已知数列an的前n项和为Sn,且Sn=n^2.数列bn为等比数列,且b1=1,b4=8. 2020-07-09 …
求n阶行列式的值。求n阶行列式D的值,其中D=|122…2||222…2||223…2||………… 2020-07-19 …
通项为An=n(n+1)/2数列的前n项和 2020-07-23 …
设数列{an}的前n项和为sn,已知sn=2an-2^(n+1),(1).求证数列{an/2^n} 2020-07-23 …
An=2^(n+1)-2,数列{An}中是否存在3项Ar,As,At(r 2020-07-28 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
已知(1+x+x^2)(x+1/x^3)^n的展开式中没有常数项,n属于N*,且2 2020-07-31 …
1.数列{an}中,a1=1,a2=2,a3=3,a4=5,如何推出数列的递推公式为a(n+2)= 2020-08-01 …
1.化简:6√x/3-3/4√4x/3+x√12/x2.若等腰三角形两边长分别为m,n,且2√3m- 2020-12-31 …