早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.(I)求证:数列{an}为等差数列,并求�已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.(I)求证:数列{an}为等差

题目详情
已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.(I)求证:数列{an}为等差数列,并求�
已知正数数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(I)求证:数列{an}为等差数列,并求出通项公式;
(II)设bn=(1-an2-a(1-an),若bn+1>bn对任意n∈N*恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(I)证明:∵an2=Sn+Sn-1(n≥2),∴an?12=sn?1+sn?2 (n≥3).
两式相减可得an2 -an?12=Sn-sn-2=an +an-1,∴an -an-1=1,
再由a1=1,可得an=n.
(II)∵bn=(1-an2-a(1-an),
∴bn+1=(1?an+1)2-a(1-an+1).
即bn=(1-n)2-a(1-n)=n2+(a-2)n+1-a,bn+1=[1-(n+1)]2-a[1-(n+1)]=n2+an.
故bn+1-bn=2n+a-1,
再由bn+1>bn对任意n∈N*恒成立可得2n+a-1>0恒成立,故a>1-2n恒成立.
而1-2n的最大值为1-2=-1,故a>-1,
即实数a的取值范围(-1,+∞).