早教吧作业答案频道 -->数学-->
函数f(x)在[0,1]连续,(0,1)可导,f(0)=0,f(1)=2,证明:在(0,1)内至少存在ξ,f'(ξ)=2ξ+1
题目详情
函数f(x)在[0,1]连续,(0,1)可导,f(0)=0,f(1)=2,证明:在(0,1)内至少存在ξ,f'(ξ)=2ξ+1
▼优质解答
答案和解析
令g(x)=f(x)-x^2-x
则g(x)在[0,1]连续,(0,1)可导,
又g(0)=f(0)-0^2-0=0
g(1)=f(1)-1^2-1=0
所以g(0)=g(1)
据罗尔定理知,在(0,1)内至少存在ξ,使g'(ξ)=0,即f'(ξ)=2ξ+1.
则g(x)在[0,1]连续,(0,1)可导,
又g(0)=f(0)-0^2-0=0
g(1)=f(1)-1^2-1=0
所以g(0)=g(1)
据罗尔定理知,在(0,1)内至少存在ξ,使g'(ξ)=0,即f'(ξ)=2ξ+1.
看了 函数f(x)在[0,1]连续...的网友还看了以下:
还是lingo问题road(country,country):length,xie,c;endse 2020-05-13 …
ansys直接建立有限元模型问题finish/clear/prep7n,1,0,0,0n,2,0, 2020-05-17 …
在0.8•3,0.83,0.•8•3三个数中,是有限小数,0.•8•30.•8•3是纯循环小数,0 2020-06-27 …
设函数f(x)在x=0处连续,且limh→0f(h2)h2=1,则()A.f(0)=0且f−′(0 2020-07-20 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
已知单调连续函数y=f(x)在下列离散点上的函数值,求方程f(x)=0在区间1,2内根的近似值,使 2020-08-02 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …