早教吧作业答案频道 -->数学-->
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明存在一个ξ∈(a,b),使f'(ξ)+f(ξ)g'(ξ)=0
题目详情
设函数f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明存在一个ξ∈(a,b),使f'(ξ)+f(ξ)g'(ξ)=0
▼优质解答
答案和解析
构造函数F(x)=f(x)×e^(g(x)),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=0,由罗尔中值定理,存在一个ξ∈(a,b),使F'(ξ)=0,此即f'(ξ)+f(ξ)g'(ξ)=0.
看了 设函数f(x),g(x)在[...的网友还看了以下:
两函数对称问题y=g(x)与y=f(x)的图像关于点(a,0)对称,则g(a+x)=-f(a-x) 2020-05-02 …
1.已知f(x)与g(x)是定义R上的两个可导函数,若f(x)与g(x)满足f’(x)=g'(x) 2020-05-13 …
f(x)是定义在R上的增函数,G(x)=f(x)-f(-x),则G(x)必定是:1)增函数还是减函 2020-05-15 …
分别做出一个函数f(x),g(x)满足:f(x),g(x)定义域为实数集R,f(x)在任意点不可导 2020-06-25 …
为什么两个偶函数相加所得的和为偶函数?证明:1)设f(x),g(x)都是偶函数,则有f(-x)=f 2020-06-26 …
高等数学题:设映射f:X→Y,若存在一个映射g:Y→X,使g*f=I,f*g=J,其中I,J分别是 2020-07-30 …
高二数学选修2-2关于导数的一个问题刚教了导数的运算{f(x)g(x)}'=f(x)'g(x)+f( 2020-11-03 …
已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).(1)求函数已知 2020-12-08 …
已知两个分段函数f(x)和g(x),求f(g(x))只要讨论g(x)的取值范围而求f(f(x))却需 2020-12-23 …
若函数f(x)满足f(x)+1=1/(f(x+1)),当x∈0,1时,f(x)=x,若在区间(-1, 2020-12-26 …