早教吧作业答案频道 -->其他-->
对于函数f(x),若存在区间M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳固区间”.现有四个函数:①f(x)=ex;②f(x)=x3;③f(x)=sinx;④f(x)=x2-2x+2.
题目详情
对于函数f(x),若存在区间M=[a,b](a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳固区间”.现有四个函数:
①f(x)=ex;
②f(x)=x3;
③f(x)=sinx;
④f(x)=x2-2x+2.
其中存在“稳固区间”的函数有______.
①f(x)=ex;
②f(x)=x3;
③f(x)=sinx;
④f(x)=x2-2x+2.
其中存在“稳固区间”的函数有______.
▼优质解答
答案和解析
:①对于函数f(x)=ex 若存在“稳定区间”[a,b],由于函数是定义域内的增函数,故有ea=a,eb=b,
即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,
故①不存在“稳定区间”.
②对于f(x)=x3 存在“稳定区间”,如 x∈[0,1]时,f(x)=x3 ∈[0,1].
③对于函数f(x)=sinx,若正弦函数存在等值区间[a,b],则在区间[a,b]上有sina=a,sinb=b,由正弦函数的值域知道[a,b]⊆[-1,1],但在区间]⊆[-1,1]上仅有sin0=0,所以函数f(x)=sinx没有“稳固区间”.
对于④f(x)=x2-2x+2,存在“稳定区间”,如 x∈[1,2]时,f(x)∈[1,2].
故答案为:②④.
即方程ex=x有两个解,即y=ex和y=x的图象有两个交点,这与即y=ex和y=x的图象没有公共点相矛盾,
故①不存在“稳定区间”.
②对于f(x)=x3 存在“稳定区间”,如 x∈[0,1]时,f(x)=x3 ∈[0,1].
③对于函数f(x)=sinx,若正弦函数存在等值区间[a,b],则在区间[a,b]上有sina=a,sinb=b,由正弦函数的值域知道[a,b]⊆[-1,1],但在区间]⊆[-1,1]上仅有sin0=0,所以函数f(x)=sinx没有“稳固区间”.
对于④f(x)=x2-2x+2,存在“稳定区间”,如 x∈[1,2]时,f(x)∈[1,2].
故答案为:②④.
看了对于函数f(x),若存在区间M...的网友还看了以下:
已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[ 2020-04-06 …
(2010•郑州二模)已知函数f(x)满足f(x)=f(π-x),且当x∈(-π2,π2)时,f( 2020-05-14 …
f(x)=x^2+ax+b(1)函数f(x)的图像过(1,1),f(-1)=f(3),求g(x)= 2020-05-16 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
若函数f(x)(f(x)≠0)为奇函数,则必有()A.f(x)•f(-x)>0B.f(x)•f(- 2020-06-09 …
设F(x)=∫x0(2t-x)f(t)dt,f(x)可导,且f′(x)>0,则()A.F(0)是极 2020-06-12 …
针对程序段:IF(A||B||C)THENW=W/X,对于(A,B,C)的取值,(57)测试用例能 2020-07-10 …
设函数f(x)=ax2+bx+c(a>0),满足f(1-x)=f(1+x),则f(2x)与f(3x 2020-07-13 …
设可微函数f(x)满足A.f(0)是f(x)的极小值B.f(0)是f(x)的极大值C.(0,f(0 2020-07-31 …
函数f(x)在x=x0处的导数可表示为y′|x=x0,即()A.f′(x0)=f(x0+△x)-f( 2020-11-01 …