早教吧作业答案频道 -->其他-->
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理
题目详情
对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
(Ⅰ)已知函数f(x)=ax2+2x-4a(a∈R,a≠0),试判断f(x)是否为“局部奇函数”?并说明理由;
(Ⅱ)若f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.
▼优质解答
答案和解析
(Ⅰ)若f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m•2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在x≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
≤m≤1+
,
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
,
解得1+
<m≤2
.
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
≤m≤2
.
当f(x)=ax2+2x-4a时,
由f(-x)+f(x)=0得2a(x2-4)=0
解得x=±2,
所以方程f(-x)+f(x)=0有解,
因此f(x)为“局部奇函数”.
(Ⅱ)当f(x)=4x-m•2x+1+m2-3时,f(-x)+f(x)=0可化为4x+4-x-2m(2x+2-x)+2m2-6=0.
令t=2x+2-x,则t≥2,
则4x+4-x=t2-2,
从而t2-2mt+2m2-8=0在x≥2有解即可保证f(x)为“局部奇函数”.
令F(t)=t2-2mt+2m2-8,
1° 当F(2)≤0,t2-2mt+2m2-8=0在x≥2有解,
由F(2)≤0,即2m2-4m-4≤0,解得1-
| 3 |
| 3 |
2° 当F(2)>0时,t2-2mt+2m2-8=0在x≥2有解,等价于
|
解得1+
| 3 |
| 2 |
(说明:也可转化为t2-2mt+2m2-8=0的大根大于等于2求解)
综上,所求实数m的取值范围为1-
| 3 |
| 2 |
看了对于函数f(x),若在定义域内...的网友还看了以下:
设矩阵,为阶方阵,满足等式,则下列关于矩阵秩的论述正确的是().A.R(A)>=R(C)B.R(B 2020-06-18 …
已如f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x 2020-06-27 …
实数x、y满足2x^2+9xy+10y^2+1=0,则y的取值范围是?这道题应该怎么想?它没说是存 2020-07-13 …
设集合A={y|y=x2-2x+3,x=R}B={y|y=x+1/2x,x=设集合A={y|y=x 2020-07-22 …
函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x),当x∈[0,1]时,f(x)=2x 2020-08-01 …
已知定义域为R的函数f(x)满足:①对于任意的x∈R,f(-x)+f(x)=0;②当x>0时,f( 2020-08-03 …
已知x、y、z满足2x-y-2z-6=0,已知x、y、z满足2x-y-2z-6=0,x2+y2+z2 2020-10-31 …
分子间同时存在着引力和斥力,若分子间引力和斥力随分子间距离r变化规律分别是f引,f斥=,当分子力表现 2020-11-30 …
分子间同时存在着引力和斥力,若分子间引力和斥力随分子间距离r变化规律分别是f引=bra,f斥=drc 2020-11-30 …
w个长方形足球场长为三m,宽为70m.若它r周长大于250m,面积九于7560m,求其三r范围.我们 2020-12-01 …