假如Hannah是你在网上结识的英国笔友,请根据英文提示向你的同学介绍一下她的情况。提示:1.Englishgirl,inajuniorschool,inLondon2.
假如 Hannah 是你在网上结识的英国笔友,请根据英文提示向你的同学介绍 一 下她的情况。提示:
1 . English girl , in a junior school , in London
2 . different from me , taller , more outgoing
3 . live with her parents , go to school by bus , every day
4 . favorite subject : biology , be interested in Chinese herbs
5 . want to , a doctor of Chinese medicine
要求: 1 .语句通顺,意思连贯,符合逻辑;
2 .结构完整,语法正确,书写正确,卷面整洁;
3 .词数 60 — 80 。
Hannah is my best pen friend . She is an English girl . Now she is studying in a junior school in London . She is different from me . She is taller and more outgoing than me . She lives with her parents
. She goes to school by bus every day . Her favorite subject is biology . To my surprise , she is interested in Chinese herbs . She wants to be a doctor of Chinese medicine . He wishes to come to China to study Chinese medicine .
网上今天讨论的主题是“My best friend and I”.假如你有一个最好的朋友Lucy, 2020-05-16 …
复数(-2根号3+i)÷(1+2根号3×i)+{根号2÷(1-i)}^2004的虚部为i为虚数 2020-06-02 …
虚数.提,知道的速度进.做作业ing在复平面内指出Za=1+2i,Zb=根号(2)+根号(3)i, 2020-07-30 …
已知复数z1=根号3+i,|z2|=2,zi*(z2)^2是虚部为正数的纯虚数,求复数z2设zi* 2020-07-30 …
在复平面内,复数Z=1+2i,Z=-2+i,Z=根好3+根号2i,Z=根号2-根号3i.求证:这些 2020-08-01 …
有关复数的题目一.巳知1+x+x^2=0,求证:x^1979+x^1989+x^1999=0二.设 2020-08-01 …
已知无穷等差数列{an}的公差为d,且各项均为正数,给出方程aix^2+2a(i+1)x+a(i+ 2020-08-02 …
证明:在复数范围内,方程|z|^2+(1-i)z把(就是上面有一横)-(1+i)z=(5-5i)/( 2020-11-01 …
复数计算分母是1+2根号3i分子是i-2根号3+(5+i19次方)-(分母根号2分子1+i)22次方 2020-11-01 …
z=[(1+i)^3(a-i)^2]/根号2(a-3i)^2,且|z|=2/3,则是实数a= 2020-11-01 …