早教吧作业答案频道 -->其他-->
如图,在四边形ABCD中,AB=BC=1,∠ABC=90°,且AB∥CD,将一把三角尺的直角顶点P放在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:(1)如图,当点Q在边CD上时,
题目详情

(1)如图,当点Q在边CD上时,线段PQ与BP有怎样的数量关系?并证明你的猜想.
(2)当点Q在线段DC延长线上时,在备用图中画出符合要求的示意图,并判断(1)中的结论是否仍成立?
(3)点P在线段AC上运动时,△PCQ是否可能为等腰三角形?若可能,求此时AP的值;若不可能,请说明理由.
▼优质解答
答案和解析
(1)证明:如图1,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
,
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(2)成立.
理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEC=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
,
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(3)能.
证明:如图3,延长BP交DC于G,
∵点Q在DC的延长线上,
∴∠PCQ>90°,
∴等腰△PCQ中,PC=QC,
∴∠1=∠2,
∵∠BPQ=90°,
∴∠1+∠5=90°,∠2+∠3=90°,
∵∠1=∠2,
∴∠5=∠3,
在正方形ABCD中,AB∥DC,
∴∠4=∠5,
∴∠4=∠3,
∴AP=AB=1.

∵∠PCE=45°,∠PEQ=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
|
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(2)成立.
理由:如图2,过点P作PF⊥BC于点F,PE⊥CD于点E,
∵∠PCE=45°,∠PEC=90°,
∴PE=EC.
∴四边形PFCE是正方形.
∴PE=PF.
∵∠BPF=∠QPE=90°-∠FPQ,∠BFP=∠PEQ=90°,
在△BPF与△QPE中,
|
∴△BPF≌△QPE(ASA),
∴BP=PQ;
(3)能.
证明:如图3,延长BP交DC于G,

∵点Q在DC的延长线上,
∴∠PCQ>90°,
∴等腰△PCQ中,PC=QC,
∴∠1=∠2,
∵∠BPQ=90°,
∴∠1+∠5=90°,∠2+∠3=90°,
∵∠1=∠2,
∴∠5=∠3,
在正方形ABCD中,AB∥DC,
∴∠4=∠5,
∴∠4=∠3,
∴AP=AB=1.
看了 如图,在四边形ABCD中,A...的网友还看了以下:
判断下列各题中,p是q的什么条件?(1)p:x=1是方程ax2+bx+c=0的根,q:a+b+c= 2020-04-09 …
若方程x^2+px+q=0的两个根中只有一个根为0那么( )A.p=q=0 B.p=0,q≠0 C 2020-05-16 …
当a>0时不等式组0≤x−a≤10≤x+a≤1的解集为当a>12时为∅;当a=12时为{12};当 2020-05-16 …
f(x)=a的x平方(a>0,a≠1)在区间[0,1]上的最大值与最小值的和为3,则实数a的值.f 2020-05-23 …
椭圆x^2+y^2/b=1(a>b>0)的离心率为√3/2,椭圆上有一点P(0,1)求椭圆方程,过 2020-06-30 …
p是q的什么条件(1)p:未位数是2的正整数,q:可以被2整除的整数(2)p:角A与角B是对顶角, 2020-07-30 …
1)设全体为实数集R,集合A=(0,+∞),B=[0,3],求(1)CRA(2)CR(A∩B)2) 2020-08-01 …
z=a+8-ai/2,a+8=0,a≠0,a=-8,依据下列题?复数z=a+2i/1+i+(3-i 2020-08-01 …
在平面直角坐标系中,o为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关 2020-08-02 …
给出下面类比推理命题(Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b 2020-11-29 …