早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=(1/3)x^3-ax(a>0),g(x)=b*x^2+2b-1第一问与23无关(2)当a=1-2b时,若函数f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围(3)当a=1-2b=1时,求函数f(x)+g(x)在区间[t,t+3]上的最大值

题目详情
设函数f(x)=(1/3)x^3-ax(a>0),g(x)=b*x^2+2b-1
第一问与23无关
(2)当a=1-2b时,若函数f(x)+g(x)在区间(-2,0)内恰有两个零点,求a的取值范围
(3)当a=1-2b=1时,求函数f(x)+g(x)在区间[t,t+3]上的最大值
▼优质解答
答案和解析
y'=2a(x-1) 1/x=(2ax²-2ax 1)/x (x>0)
当a=0时,显然不满足条件
当a≠0时,判别式=4a²-8a 因为有两个极值点,所以 4a²-8a>0 即a>2或者a