早教吧作业答案频道 -->数学-->
设函数f(x)=lnx-(a+1)x(a∈R)(1)当a=0时,讨论函数f(x)的单调性;(2)当a>-1时,函数f(x)有最大值且最大值大于-2时,求a的取值范围.
题目详情
设函数f(x)=lnx-(a+1)x(a∈R)
(1)当a=0时,讨论函数f(x)的单调性;
(2)当a>-1时,函数f(x)有最大值且最大值大于-2时,求a的取值范围.
(1)当a=0时,讨论函数f(x)的单调性;
(2)当a>-1时,函数f(x)有最大值且最大值大于-2时,求a的取值范围.
▼优质解答
答案和解析
(1)当a=0时,函数f(x)=lnx-x,定义域为(0,+∞),
f′(x)=
,
i)当0<x<1时,f′(x)>0,函数单调递增,
ii)当x>1时,f′(x)<0,函数单调递减;
综上所述:函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
(2)函数f(x)=lnx-(a+1)x(a∈R)的定义域为(0,+∞),
f′(x)=
,
当a>-1时,a+1>0,令f′(x)=0,解得x=
,
i)当0<x<
时,f′(x)>0,函数单调递增,
ii)当x>
时,f′(x)<0,函数单调递减.
得:f(x)max=f(
)=ln
-1>-2,
即ln(a+1)<1,
∴a+1<e,∴-1<a<e-1,
故a的取值范围为(-1,e-1).
f′(x)=
1-x |
x |
i)当0<x<1时,f′(x)>0,函数单调递增,
ii)当x>1时,f′(x)<0,函数单调递减;
综上所述:函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
(2)函数f(x)=lnx-(a+1)x(a∈R)的定义域为(0,+∞),
f′(x)=
1-(a+1)x |
x |
当a>-1时,a+1>0,令f′(x)=0,解得x=
1 |
a+1 |
i)当0<x<
1 |
a+1 |
ii)当x>
1 |
a+1 |
得:f(x)max=f(
1 |
a+1 |
1 |
a+1 |
即ln(a+1)<1,
∴a+1<e,∴-1<a<e-1,
故a的取值范围为(-1,e-1).
看了设函数f(x)=lnx-(a+...的网友还看了以下:
已知y=f(x)是奇函数,且满足f(x+2)+2f(-x)=0,当x∈(0,2)时,f(x)=lnx 2020-03-30 …
已知函数y=f(x)是定义在R上的奇函数,当x>=0时,f(x)=x+x^21.求x<0时,f(x 2020-05-14 …
请教高等数学中连续和导数的题2道1.函数f(x)在x=a处可导的充分条件是()A.h趋向+∞时,h 2020-05-17 …
1.已知f(x)=ax的平方+bx+c(a不等于0)中,f(x+2)-f(x)=2x-3,且f(1 2020-06-03 …
已知f(x)=logax,g(x)=2loga(2x+t-2)(a>0,a≠1,t属于r)1、当t 2020-06-06 …
导数计算f(x)在x=a处二阶可导,则limh→0时{[f(a+h)-f(a)]/h-f'(a)} 2020-06-10 …
设映射f:X->Y,A属于X。记f(A)的原像为f-1(f(A))证明⑴A属于f-1(f(A)); 2020-06-26 …
函数f(x)=2x^+(x-a)|x-a|,求f(x)最小值f(x)=3(x-a/3)^+2a^/3 2020-11-07 …
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x^2-2x(1)求当x<0时,f(x)的解 2020-12-03 …
1.若f(x)在x=a处二阶可导,则((f(a+h)-f(a))/h-f'(a))/h当h趋向于0时 2020-12-23 …