早教吧作业答案频道 -->其他-->
如图,过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.(1)求证:E为BC的中点;(2)若CF=3,DE•EF=154,求EF的长.
题目详情
如图,过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且AD⊥DE.(1)求证:E为
![]() |
| BC |
(2)若CF=3,DE•EF=
| 15 |
| 4 |
▼优质解答
答案和解析
(1)证明:连接OE
OA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为
的中点.
(2)连CE,则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴
=
,
=
∴
=
即DE•EF=AD•CF
DE•EF=
,CF=3
∴AD=
OE∥AD=>
=
=>
=
=>8x2+7x-15=0
∴x1=1,x2=-
(舍去)
∴EF2=FC•FA=3x(3+2)=15
∴EF=
(1)证明:连接OEOA=OE=>∠OAE=∠OEA
DE切圆O于E=>OE⊥DE
AD⊥DE=>∠EAD+∠AED=90°
=>∠EAD=∠OEA
⇒OE∥AD
=>E为
![]() |
| BC |
(2)连CE,则∠AEC=90°,设圆O的半径为x
∠ACE=∠AED=>Rt△ADE∽Rt△AEC=>
DE切圆O于E=>△FCE∽△FEA
∴
| DE |
| AD |
| CE |
| AE |
| CE |
| AE |
| CF |
| EF |
∴
| DE |
| AD |
| CF |
| EF |
即DE•EF=AD•CF
DE•EF=
| 15 |
| 4 |
∴AD=
| 5 |
| 4 |
OE∥AD=>
| OE |
| AD |
| OF |
| AF |
| x | ||
|
| x+3 |
| 2x+3 |
∴x1=1,x2=-
| 15 |
| 8 |
∴EF2=FC•FA=3x(3+2)=15
∴EF=
| 15 |
看了如图,过圆O外一点D作圆O的割...的网友还看了以下:
如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A 2020-05-17 …
如图,以线段AB为直径作O,CD与O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE 2020-05-17 …
(2010•南宁)如图1,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE 2020-06-12 …
(2005•淮安)如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD 2020-07-22 …
已知:过O外的定点P作O的两条切线,分别切O于A、B,在劣弧AB上任取一点C,经过点C作O的切线, 2020-07-31 …
如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E 2020-07-31 …
数学,紧急!1.已知△ABC的内切圆与边BC相切于点D,且点D恰为BC的中点,∠B=65°,求∠A 2020-07-31 …
如图,AB是⊙O的直径,点C在BA的延长线上,CA=AO,点D在⊙O上,∠ABD=30°.⑴求证: 2020-07-31 …
公切线已知圆O1与圆O2外切于点O已知圆O1与圆O2外切于点O,其半径之比为1:3,以直线O1O2 2020-07-31 …
如图,过圆O外一点D作圆O的割线DBA,DE与圆O切于点E,交AO的延长线于F,AF交圆O于C,且A 2020-12-05 …
