早教吧作业答案频道 -->数学-->
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f″(ξ
题目详情
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
(Ⅰ)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f″(ξ)=g″(ξ).
(Ⅰ)存在η∈(a,b),使得f(η)=g(η);
(Ⅱ)存在ξ∈(a,b),使得f″(ξ)=g″(ξ).
▼优质解答
答案和解析
证明:(I)由f(x),g(x)在(a,b)内存在相等的最大值,
①若在某点c∈(a,b)同时取得最大值,则f(c)=g(c),此时的c就是所求点,即存在η∈(a,b),使得f(η)=g(η);
②若两个函数取得最大值的点不同,设f(c)=maxf(x),g(d)=maxg(x),f(c)=g(d).
则有f(c)-g(c)>0,g(d)-f(d)<0,
因此函数F(x)=f(x)-g(x)在[c,d]或[d,c]上满足零点定理的条件,
故在(c,d)或(d,c)内肯定存在η,使得f(η)=g(η)
综合①②,存在η∈(a,b),使得f(η)=g(η)
(II)由(1)和洛尔定理在区间(a,η),(η,b)内分别存在一点{ξ}_{1}和{ξ}_{2},使得
f(ξ1)=0,f′(ξ2)=0
在区间(ξ1,ξ2)内对函数F(x)=f(x)-g(x)用洛尔定理,即
∃ξ∈(ξ1,ξ2)⊂(a,b),F''(ξ)=f''(ξ)-g''(ξ)=0
即∃ξ∈(a,b),使得f″(ξ)=g″(ξ).
①若在某点c∈(a,b)同时取得最大值,则f(c)=g(c),此时的c就是所求点,即存在η∈(a,b),使得f(η)=g(η);
②若两个函数取得最大值的点不同,设f(c)=maxf(x),g(d)=maxg(x),f(c)=g(d).
则有f(c)-g(c)>0,g(d)-f(d)<0,
因此函数F(x)=f(x)-g(x)在[c,d]或[d,c]上满足零点定理的条件,
故在(c,d)或(d,c)内肯定存在η,使得f(η)=g(η)
综合①②,存在η∈(a,b),使得f(η)=g(η)
(II)由(1)和洛尔定理在区间(a,η),(η,b)内分别存在一点{ξ}_{1}和{ξ}_{2},使得
f(ξ1)=0,f′(ξ2)=0
在区间(ξ1,ξ2)内对函数F(x)=f(x)-g(x)用洛尔定理,即
∃ξ∈(ξ1,ξ2)⊂(a,b),F''(ξ)=f''(ξ)-g''(ξ)=0
即∃ξ∈(a,b),使得f″(ξ)=g″(ξ).
看了设函数f(x),g(x)在[a...的网友还看了以下:
对商品表增加最小库存属性;若修改某商品的库存时,使得库存值小于或等于其最小库存值,则向采购表 2020-05-26 …
函数的定义域为,若存在闭区间,使得函数满足:①在内是单调函数;②在上的值域为,则称区间为的“倍值区 2020-06-15 …
已知圆C:x^2+y^2+2x-6y+1=0,直线l:x+my=31 若l与C相切,求M的值2 是 2020-06-27 …
pH值是否存在负值以及大于14的值pH值是氢离子浓度指数,是氢离子浓度的负对数(pH=-logc( 2020-07-29 …
1.若方程x2+2px-q=0(p,q是实数)没有实数根,求证:p+q小于四分之一2.为使关于x的 2020-07-30 …
a.若Xo为f(x)的极点,则必有f'(Xo)=0b.若f'(Xo)=0,则Xo必为f(x)的极值 2020-07-31 …
数列{an}中,如果存在ak,使得"ak>ak-1且ak>ak+1"成立(其中k≥2,k∈N*),则 2020-12-31 …
数列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则 2020-12-31 …
小明在用电流表和电压表测量定值电阻阻值的实验中,设计了如图所示的a、b两种测量电路.由于电流表和电压 2020-12-31 …
在经济发展史上,斯密是第一个明确提出使用价值和交换价值概念的人。他认为使用价值和交换价值的关系是①使 2021-02-17 …