早教吧作业答案频道 -->数学-->
如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,试说明E,F关于AD对称
题目详情
如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,试说明E,F关于AD对称


▼优质解答
答案和解析

①证:∵AD是∠BAC的平分线
∴∠EAD=∠FAD
∵DE⊥AB,DF⊥AC
∴∠BFD=∠CFD=90°
∴∠AED与∠AFD=90°
在△AED与△AFD中
∠EAD=∠FAD
AD=AD
∠AED=∠AFD
∴△AED≌△AFD(AAS)
∴AE=AF
在△AEO与△AFO中
∠EAO=∠FAO
AO=AO
AE=AF
∴△AEO≌△AFO(SAS)
∴∠AOE=∠AOF=90°
∴AD⊥EF
所以E,F关于AD对称
②证:∵AD是∠BAC的平分线
∴∠BAD=∠CAD
又∵DE⊥AB,DF⊥AC
∴∠AED=∠AFD=90°
在△AED与△AFD中
∠BAD=∠CAD
∠AED=∠AFD
AD=AD
∴△AED≌△AFD(AAS)
∴∠EDO=∠FDO,ED=FD
在△EDO=△FOD中
DO=OD
∠EDO=∠FDO
ED=FD
∴△EDO≌△FOD(SAS)
∴∠1=∠2
∵∠1+∠2=180°
∴∠1=∠2=90°
∴∠3=∠4=90°
即AD⊥EF
所以E,F关于AD对称

①证:∵AD是∠BAC的平分线
∴∠EAD=∠FAD
∵DE⊥AB,DF⊥AC
∴∠BFD=∠CFD=90°
∴∠AED与∠AFD=90°
在△AED与△AFD中
∠EAD=∠FAD
AD=AD
∠AED=∠AFD
∴△AED≌△AFD(AAS)
∴AE=AF
在△AEO与△AFO中
∠EAO=∠FAO
AO=AO
AE=AF
∴△AEO≌△AFO(SAS)
∴∠AOE=∠AOF=90°
∴AD⊥EF
所以E,F关于AD对称
②证:∵AD是∠BAC的平分线
∴∠BAD=∠CAD
又∵DE⊥AB,DF⊥AC
∴∠AED=∠AFD=90°
在△AED与△AFD中
∠BAD=∠CAD
∠AED=∠AFD
AD=AD
∴△AED≌△AFD(AAS)
∴∠EDO=∠FDO,ED=FD
在△EDO=△FOD中
DO=OD
∠EDO=∠FDO
ED=FD
∴△EDO≌△FOD(SAS)
∴∠1=∠2
∵∠1+∠2=180°
∴∠1=∠2=90°
∴∠3=∠4=90°
即AD⊥EF
所以E,F关于AD对称
看了 如图,AD为△ABC的角平分...的网友还看了以下:
关于A、B、C、D四点的说法正确的是()A、四点都位于东半球B、C、D两点位于西半球C、D点位于C 2020-05-13 …
如图平面直角坐标系XOY中,直线Y= 分别交X轴 Y轴于A C点建议自己画图:在平面直角坐 2020-05-15 …
如图,在三角形ABC中,角B等于角C,点D在BC边上,点E在AC边上,角2等于40度,角ADE=角 2020-05-15 …
如图,B(6,0)E(0,6),直线Y=3X+3与X轴,Y轴分别交于A,C,点P为直线BE上一点, 2020-05-16 …
如图,B(6,0)E(0,6),直线Y=3X+3与X轴,Y轴分别交于A,C,点P为直线BE上一点, 2020-05-16 …
如图,B(6,0)E(0,6),直线Y=3X+3与X轴,Y轴分别交于A,C,点P为直线BE上一点, 2020-05-16 …
(2010•岳阳)如图为伽利略理想实验示意图,实验过程中,小球()A.在b点的速度最小B.在a点的 2020-07-15 …
如图,直线AB过x轴上的点(3,0),且与抛物线y=ax²相交于B,C点坐标为(1,2),在抛物线 2020-07-18 …
(2014•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足 2020-07-31 …
如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直 2021-01-02 …