早教吧作业答案频道 -->其他-->
线性代数问题.2阶矩阵A1012,验证对任意的f(x) g(x),是否都有f(A) g(A)=g(A)f(A).A=1 01 2
题目详情
线性代数问题.2阶矩阵A1012,验证对任意的f(x) g(x),是否都有f(A) g(A)=g(A)f(A).
A=1 0
1 2
A=1 0
1 2
▼优质解答
答案和解析
A=1 0 =1 0 ∈群B={(r 0)| r≠0,p≠0} 是一个简单的对角矩阵群.
1 2 0 2 0 p
显然有f(A)、g(A)变换后仍属于B,即f(A)、g(A)任然是二阶对角矩阵群B的元素.
又因为矩阵乘法满足交换律.所以f(A)g(A)=g(A)f(A).得证.
例如:
可以简单设f(A)=(s 0) g(A)=(x 0)
0 t 0 y
则fg=(sx 0)=gf 所以fg=gf.得证.
0 ty
参考一下.
1 2 0 2 0 p
显然有f(A)、g(A)变换后仍属于B,即f(A)、g(A)任然是二阶对角矩阵群B的元素.
又因为矩阵乘法满足交换律.所以f(A)g(A)=g(A)f(A).得证.
例如:
可以简单设f(A)=(s 0) g(A)=(x 0)
0 t 0 y
则fg=(sx 0)=gf 所以fg=gf.得证.
0 ty
参考一下.
看了 线性代数问题.2阶矩阵A10...的网友还看了以下:
设n阶方阵A满足A^3=0,则下列矩阵 B=A-E,C=A+E,D=A^2-A,F=A^2+A中可 2020-04-05 …
有关特征值的证明问题.设A、B、C都是n阶矩阵,A、B各有n个不同的特征值,又f(λ)是A的特征多 2020-04-12 …
1.如果f(x)=(1/1+x^2)+x^2*∫^∧1∨0f(x)dx,求∫∧1∨0f(x)dx的 2020-04-13 …
已知f(a)=a平方-a+1,有关矩阵的一个题目A是一个矩阵为2231-10312求f(A)我看了 2020-04-13 …
问线性代数题目1.设f(x)=x^2-2x-1,又设3阶方阵A的特征值分别是:1,0,-1,求f( 2020-04-13 …
已知f(x)=(x-a)^2*g(x),其中g'(x)在点x=a的某邻域内连续,求f"(a).题目 2020-07-31 …
若A是n阶矩阵,f(x)是一个常数项不为零的多项式,且满足f(A)=0,证明:A的特征值一定若A是 2020-07-31 …
矩阵特征值的问题设A为一n阶阵,放f(A)为A的矩阵多项式,证明:若f(A)=0,则f(A)的特征 2020-08-02 …
矩阵问题f(x)=x^2-5x+3,A=(下面写),求f(A)f(x)=x^2-5x+3,A=(2- 2020-10-31 …
线性代数问题1.已知二次型f(x1,x2,x3)=x1^2+tx2^2+2x3^2+2x1x2的秩为 2021-02-10 …