早教吧作业答案频道 -->其他-->
(文科做(1)(2)(4),理科全做)已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点(1)证明:y1y2=-p2且(y1+y2)2=2p(x1+x2-p);(2)点Q为线段AB的中点
题目详情
(文科做(1)(2)(4),理科全做)
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点
(1)证明:y1y2=-p2且(y1+y2)2=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①S△F1F2A−S△F1F2C=S△F1F2D−S△F1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
,若存在,求出点P的坐标;若不存在,说明理由.
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点
(1)证明:y1y2=-p2且(y1+y2)2=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①S△F1F2A−S△F1F2C=S△F1F2D−S△F1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
11 |
▼优质解答
答案和解析
(1)设AB:x=my+
,代入y2=2px得:
y2-2pmy-p2=0,
∴y1y2=-p2,
∵2p(x1+x2-p)=2px1+2px2-2p2=y12+y22-2p2=(y1+y2)2-2y1y2-2p2
=(y1+y2)2+2p2-2p2=(y1+y2)2
∴(y1+y2)2=2p(x1+x2-p).
(2)设线段AB的中点坐标为M(x,y),则x1+x2=2x,y1+y2=2y
∴4y2=2p(2x-p)
即中点的轨迹方程为y2=px-
p2.
(3)由(1)可得,x1x2=
=4,∴p=4 曲线 C1:y2=8x
∴A(1,-2
),B(4,4
)或A(1,2
),B(4,-4
)
设所求曲线方程为mx2+ny2=1,则
解得
p |
2 |

y2-2pmy-p2=0,
∴y1y2=-p2,
∵2p(x1+x2-p)=2px1+2px2-2p2=y12+y22-2p2=(y1+y2)2-2y1y2-2p2
=(y1+y2)2+2p2-2p2=(y1+y2)2
∴(y1+y2)2=2p(x1+x2-p).
(2)设线段AB的中点坐标为M(x,y),则x1+x2=2x,y1+y2=2y
∴4y2=2p(2x-p)
即中点的轨迹方程为y2=px-
1 |
2 |
(3)由(1)可得,x1x2=
p2 |
4 |
∴A(1,-2
2 |
2 |
2 |
2 |
设所求曲线方程为mx2+ny2=1,则
|
p |
2 |
(2)设线段AB的中点坐标为M(x,y),则x1+x2=2x,y1+y2=2y.再利用(1)的结论即可得出.
(3)利用(1)的距离即可得到p,即抛物线的方程,进而得到点A,B的坐标.设所求曲线方程为mx2+ny2=1,把点A,B的坐标代入即可得出.
(4)当y1=-2
2 |
|
52 |
5 |
|
|
11 |
2 |
- 名师点评
-
- 本题考点:
- 直线与圆锥曲线的关系;椭圆的简单性质;抛物线的标准方程.
-
- 考点点评:
- 熟练掌握圆锥曲线的标准方程及其性质、直线与圆锥曲线相交问题转化为方程联立得到根与系数的关系、中点的坐标公式、三角形的面积计算公式、分类讨论的思想方法等是解题的关键.


看了 (文科做(1)(2)(4),...的网友还看了以下:
如图,已知在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(2,0),经过原点的直线交线段A 2020-03-30 …
(1)如图1,已知矩形ABCD中,点E是BC上的一动点,过点E作EF⊥BD于点F,EG⊥AC于点G 2020-06-12 …
.已知抛物线y^2=4x的焦点F,过点K(-1,0)的直线与抛物线交与A.B两点,点A关于x轴的对 2020-06-21 …
已知过点A(-4,0)的动直线L与抛物线C:X平方=2PY(p>0)相交于B.C两点.当L得斜率是 2020-07-21 …
在平面直角坐标系中,已知A(3,1),B(2,0),O(0,0),反比例函数y=kx的图象经过点A 2020-07-22 …
已知动圆过定点(1,0),且与直线x=-1相切(1)求动圆的圆心轨迹C的方程(2)是否存在直线l, 2020-07-25 …
已知直线l:y=x-1与⊙O:x2+y2=4相交于A,B两点,过点A,B的两条切线相交于点P.(1 2020-07-25 …
已知点A是圆F1:(x+3)2+y2=16上任意一点,点F2与点F1关于原点对称.线段AF2的中垂 2020-08-01 …
在平面直角坐标系中,已知过点的椭圆:的右焦点为,过焦点且与轴不重合的直线与椭圆交于,两点,点关于坐 2020-08-01 …
已知,在△ABC中,AB=AC,D为AB边上一点,过点D作DF∥AC交BC于F,过F作FE∥AB交A 2020-11-03 …