早教吧作业答案频道 -->数学-->
2道积分题1.设函数f(x)在(0,+∞)内连续,且f(1)=5/2,且对所有的x,t∈R,满足条件∫f(u)du=t∫f(u)+x∫f(u)du,求f(x).该题的第一个积分号的上限是xt,第二个是x,第三个是t,所有积分号
题目详情
2道积分题
1.设函数f(x)在(0,+∞)内连续,且f(1)=5/2,且对所有的x,t∈R,满足条件
∫f(u)du=t∫f(u)+x∫f(u)du,求f(x).
该题的第一个积分号的上限是xt,第二个是x,第三个是t,所有积分号的下限是1
2.设f(x)在【0,1】上连续,(0,1)上可导,且满足f(1)=k∫xef(x)dx(k>1)证明存在一点m∈(0,1),使f′(m)=(1-m)f(m).
该题中积分上限是1/k,下限是0 且需要证明的式子的等号右边的第一个m的指数为-1.
1.设函数f(x)在(0,+∞)内连续,且f(1)=5/2,且对所有的x,t∈R,满足条件
∫f(u)du=t∫f(u)+x∫f(u)du,求f(x).
该题的第一个积分号的上限是xt,第二个是x,第三个是t,所有积分号的下限是1
2.设f(x)在【0,1】上连续,(0,1)上可导,且满足f(1)=k∫xef(x)dx(k>1)证明存在一点m∈(0,1),使f′(m)=(1-m)f(m).
该题中积分上限是1/k,下限是0 且需要证明的式子的等号右边的第一个m的指数为-1.
▼优质解答
答案和解析
1.对x求导
tf(xt)=tf(x)+(1,t)∫f(u)du
原式对t求导
xf(xt)=(1,x)∫f(u)du+xf(t)
两式消去f(xt)
得xtf(x)-xtf(t)+x(1,t)∫f(u)du-t(1,x)∫f(u)du=0
t=1,xf(x)-xf(1)-(1,x)∫f(u)du=0
求解这个积分方程,令y=(1,x)∫f(u)du,所以y'=f(x)
即y'-y/x=5/2,为一阶线性微分方程
y=∫e^(∫1/xdx)dx[C+∫5/2e^(-∫1/xdx)dx]
=x^2[C+5/2lnx]
y(1)=0=C,所以y=5x^2lnx/2
所以f(x)=y'=5xlnx+5x/2
2.第二个那儿ef(x)是什么意思?是e^f(x)?是不是对k>1恒成立?
换元t=1/k,0 t对f构成泛函……这是什么题目啊?
f(1)t=(0,t)∫xe^f(x)dx,对t求导
f(1)=te^f(t),f(1)=e^f(1),f(1)不存在
哪儿是不是出了点问题?
tf(xt)=tf(x)+(1,t)∫f(u)du
原式对t求导
xf(xt)=(1,x)∫f(u)du+xf(t)
两式消去f(xt)
得xtf(x)-xtf(t)+x(1,t)∫f(u)du-t(1,x)∫f(u)du=0
t=1,xf(x)-xf(1)-(1,x)∫f(u)du=0
求解这个积分方程,令y=(1,x)∫f(u)du,所以y'=f(x)
即y'-y/x=5/2,为一阶线性微分方程
y=∫e^(∫1/xdx)dx[C+∫5/2e^(-∫1/xdx)dx]
=x^2[C+5/2lnx]
y(1)=0=C,所以y=5x^2lnx/2
所以f(x)=y'=5xlnx+5x/2
2.第二个那儿ef(x)是什么意思?是e^f(x)?是不是对k>1恒成立?
换元t=1/k,0
f(1)t=(0,t)∫xe^f(x)dx,对t求导
f(1)=te^f(t),f(1)=e^f(1),f(1)不存在
哪儿是不是出了点问题?
看了2道积分题1.设函数f(x)在...的网友还看了以下:
幼儿学习用品单词,上周学到pencil,book,scissors,这周要学pencilcase, 2020-04-09 …
在坐标平面上有两个区域M和N,M是由y≥0、y≤x和y≤2-x三个不等式来确定的,N是随t变化的区 2020-05-13 …
试证明x(x+1)(x+2)(x+3)+1是个完全平方公式 2020-05-15 …
若n为自然数且n +1|1×2×3×…×n+ 1.求证:n +1是个质数 2020-05-16 …
如果把10个苹果看作单位“1”它的5分之1是()个苹果它的2分之1是()个苹果 2020-05-17 …
如果f(t)=t/(1+t),g(t)=t/(1-t),证明:证明:f(t)-g(t)=-2g(t 2020-05-23 …
求函数的值域(写出解答过程)①.y=2x+1,x∈{1,2,3,4,5}②y=√x(根号x)+1③ 2020-06-03 …
看一道函数解答题(超简单的)已知f(x+1)=x^2+2x,求f(x)令x+1=t,则t=x-1所 2020-06-06 …
求过点p(1,2,1)且与直L:(x+1)/2=(y-1)/3=z+1垂直相交的直线方程点p(1, 2020-06-12 …
求证:(x+1)(x+2)(x+3)(x+4)+1是个完全平方式.脑子笨) 2020-06-26 …