早教吧作业答案频道 -->其他-->
(2010•恩施州)(1)计算:如图①,直径为a的三等圆⊙O1、⊙O2、⊙O3两两外切,切点分别为A、B、C,求O1A的长(用含a的代数式表示);(2)探索:若干个直径为a的圆圈分别按如图②所示
题目详情
(2010•恩施州)(1)计算:如图①,直径为a的三等圆⊙O1、⊙O2、⊙O3两两外切,切点分别为A、B、C,求O1A的长(用含a的代数式表示);
(2)探索:若干个直径为a的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,探索并求出这两种方案中n层圆圈的高度hn和hn′(用含n、a的代数式表示);
(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(
≈1.73)

(2)探索:若干个直径为a的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,探索并求出这两种方案中n层圆圈的高度hn和hn′(用含n、a的代数式表示);
(3)应用:现有长方体集装箱,其内空长为5米,宽为3.1米,高为3.1米.用这样的集装箱装运长为5米,底面直径(横截面的外圆直径)为0.1米的圆柱形钢管,你认为采用(2)中的哪种方案在该集装箱中装运钢管数最多?并求出一个这样的集装箱最多能装运多少根钢管?(
3 |

▼优质解答
答案和解析
(1)∵⊙O1、⊙O2、⊙O3两两外切,
∴O1O2=O2O3=O1O3=a
又∵O2A=O3A
∴O1A⊥O2O3(1分)
∴O1A=
=
a.
(2)hn=na,
hn′=
(n-1)a+a.
(3)方案一:0.1n≤3.1,
n≤31,
31×31=961.
方案二装运钢管最多.即:按图③的方式排放钢管,放置根数最多.
根据题意,第一层排放31根,第二层排放30根,
设钢管的放置层数为n,可得
(n−1)×0.1+0.1≤3.1,
解得n≤35.6.
∵n为正整数,
∴n=35.
钢管放置的最多根数为:31×18+30×17=1068(根).
∴O1O2=O2O3=O1O3=a
又∵O2A=O3A
∴O1A⊥O2O3(1分)
∴O1A=
a2−
|
=
| ||
2 |
(2)hn=na,
hn′=
1 |
2 |
3 |
(3)方案一:0.1n≤3.1,
n≤31,
31×31=961.
方案二装运钢管最多.即:按图③的方式排放钢管,放置根数最多.
根据题意,第一层排放31根,第二层排放30根,
设钢管的放置层数为n,可得
| ||
2 |
解得n≤35.6.
∵n为正整数,
∴n=35.
钢管放置的最多根数为:31×18+30×17=1068(根).
看了(2010•恩施州)(1)计算...的网友还看了以下:
选出每组单词中划括号部分读音不同的一项.1.A:t(o)day.B:t(o)morrow.C:st 2020-04-26 …
求解救o(╯□╰)o设a,b∈(0,+∞),a≠b,x,y∈(o,∞),则a2/x+b2/y≥(a 2020-05-17 …
∵EM是⊙O的切线,怎么推出EB•EC=EM2①?,看题后回答.(2005•温州)如图,已知四边形 2020-05-21 …
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线设 2020-06-14 …
如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′ 2020-06-15 …
如果O+O=U+U+U,O+Z=U+U+U+U,那么Z+Z+U=()个O.如果设U=6,那么O=( 2020-06-18 …
弧AEC是半径a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三...弧AEC是半 2020-07-04 …
如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P= 2020-07-14 …
如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A 2020-07-30 …
,0),圆M经过原点O及点A已知在平面直角坐标系中,线段OC的长是方程x^2-2根号3x+3=0的 2020-07-31 …