早教吧作业答案频道 -->数学-->
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线设曲线y=ax^2(a>0,x>=0)与曲线y=1-x^2交于点A,过坐标原点o和A的直线与y=ax^2围成一平面,问:(1)该平面绕X轴旋转一周所称的旋转
题目详情
设曲线y=ax^2(x>=0,常数a>0)与曲线y=1-x^2交于点A,过坐标原点O和点A的直线
设曲线y=ax^2(a>0,x>=0)与曲线y=1-x^2交于点A,过坐标原点o和A的直线与y=ax^2围成一平面,问:(1)该平面绕X轴旋转一周所称的旋转体的体积V(2)a为何值时,V最大
最好写在纸上发图
设曲线y=ax^2(a>0,x>=0)与曲线y=1-x^2交于点A,过坐标原点o和A的直线与y=ax^2围成一平面,问:(1)该平面绕X轴旋转一周所称的旋转体的体积V(2)a为何值时,V最大
最好写在纸上发图
▼优质解答
答案和解析
先求A点坐标,联立两个方程解得A点坐标为(1/√(a+1),a/(a+1)).积分区域为[0,1/√(a+1)].直线OA的方程为y=ax/√(a+1),线段OA、x轴和直线x=1/√(a+1)所围成的平面图形绕x轴旋转一周所得旋转体(就是一个圆锥)的体积为V1=1/3*π*a²/√((a+1)²√(a+1)).y=ax²、x轴和直线x=1/√(a+1)所围成的平面图形绕x轴旋转一周所得的旋转体的体积为V2=∫(0,1/√(a+1))πy²dx=π∫(0,1/√(a+1))a²x^4dx=1/5*πa²/((a+1)²√(a+1)),V1-V2即为所求旋转体体积.故V=V1-V2=2/15*πa²/((a+1)²√(a+1)),对V求导的V‘=πa(a+1)^(-7/2)(4/15-a/15),令V’=0,解得a=4.所以当a=4时,V有最大值,最大值为32π/(375√5).
看了 设曲线y=ax^2(x>=0...的网友还看了以下:
A是n阶正交矩阵,对任意n维列向量X,AX保持向量X的长度.求证明|AX|*|AX|=(AX,AX 2020-04-05 …
已知抛物线y=ax^2+bx+c满足以下条件,分别求函数的表达式 详细的过程!拜托了!(1)图象经 2020-05-16 …
直线y=3分之根3x+b经过点B﹙﹣根3,2﹚,且与x轴交于点A.将抛物线y=3分之1x?沿x轴作 2020-06-08 …
在直角坐标系中,已知线段AB,点A的坐标为(1,-2),点B的坐标为(3,0),如图1所示.(1) 2020-06-14 …
以下关于元素周期表的结构叙述正确的是()A、有七个主族,八个副族B、有三个长周期(均含18种元素) 2020-07-15 …
1.一条杆全长15米,正下方5米处有点A,杆自由下落,杆从刚通过A到全部离开A用多长时间?g=10 2020-08-01 …
假如你们全家到北京过周末,请你根据以下提示,写一篇60词左右的短文。提示:1.我和父母在周五晚上开车 2020-11-13 …
A,B两种元素,A的原子序数为x,A和B所在的周期包含元素种类分别为m和nA、B两元素,A的原子序数 2020-11-17 …
以下关于元素周期表的结构叙述正确的是()A.有七个主族,八个副族B.有三个长周期(均含18种元素), 2020-11-24 …
英语翻译周最谓石礼周最谓石礼曰:“子何不以秦攻齐?臣请令齐相子,子以齐事秦,必无处矣.子因令周最居魏 2020-12-30 …