早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•济宁二模)如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.(1)求证:AE⊥平面BCD;(2)求二面角A-D

题目详情
(2014•济宁二模)如图1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D为AC中点,AE⊥BD于E,延长AE交BC于F,将△ABD沿BD折起,使平面ABD⊥平面BCD,如图2所示.
(1)求证:AE⊥平面BCD;
(2)求二面角A-DC-B的余弦值;
(3)已知点M在线段AF上,且EM∥平面ADC,求
AM
AF
的值.
▼优质解答
答案和解析
(1)证明:∵平面ABD⊥平面BCD,交线为BD,
又在△ABD中,AE⊥BD于E,AE⊂平面ABD,
∴AE⊥平面BCD.
(2)由(1)知AE⊥平面BCD,∴AE⊥EF,
由题意知EF⊥BD,又AE⊥BD,
如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,
建立空间直角坐标系E-xyz,
设AB=BD=DC=AD=2,
则BE=ED=1,∴AE=
3
,BC=2
3
,BF=
3
3

则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,
3
),
F(
3
3
,0,0),C(
3
,2,0),
DC
=(
作业帮用户 2017-11-11 举报
问题解析
(1)由平面ABD⊥平面BCD,交线为BD,AE⊥BD于E,能证明AE⊥平面BCD.
(2)以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法能求出二面角A-DC-B的余弦值.
(3)设
AM
=λ
AF
,利用向量法能求出在线段AF上存在点M使EM∥平面ADC,且
AM
AF
3
4
名师点评
本题考点:
与二面角有关的立体几何综合题;直线与平面垂直的判定.
考点点评:
本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,考查满足条件的点是否存在的判断与求法,解题时要认真审题,注意向量法的合理运用.
我是二维码 扫描下载二维码