早教吧作业答案频道 -->数学-->
(2001•福州)不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)如图,在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中
题目详情
(2001•福州)不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.
(1)如图,在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画的图形,写出一个各图都具有的两条线段相等的结论(不再标注其它字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.

(1)如图,在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形;
(2)请你观察(1)中所画的图形,写出一个各图都具有的两条线段相等的结论(不再标注其它字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);
(3)请你选择(1)中的一个图形,证明(2)所得出的结论.

▼优质解答
答案和解析
(1)如下图所示.
(2)EC=FD和ED=FC.
证明:①EC=FD.
根据垂径定理,CH=DH,
根据中位线定理,EH=FH,
所以EH-CH=FH-DH,
故EC=DF.
②ED=FC.
因为ED=EF+DF,
FC=EF+EC,
由①可得,
EC=DF,
所以ED=FC.

(3)以①图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF,再由垂径定理可得CH=DH,
∴EH-CH=FH-DH,
即EC=FD.
以②图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF(一组平行在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等),再由垂径定理可得CH=DH,
∴EH-CH=FH-DH,
即EC=FD.
(2)EC=FD和ED=FC.
证明:①EC=FD.
根据垂径定理,CH=DH,
根据中位线定理,EH=FH,
所以EH-CH=FH-DH,
故EC=DF.
②ED=FC.
因为ED=EF+DF,
FC=EF+EC,
由①可得,
EC=DF,
所以ED=FC.

(3)以①图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF,再由垂径定理可得CH=DH,
∴EH-CH=FH-DH,
即EC=FD.
以②图为例来证明.
过O作OH⊥l于H,
∵AE⊥l,BF⊥l,
∴AE∥OH∥BF,
又∵OA=OB,
∴EH=HF(一组平行在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等),再由垂径定理可得CH=DH,
∴EH-CH=FH-DH,
即EC=FD.
看了(2001•福州)不过圆心的直...的网友还看了以下:
(2014•崇明县二模)在⊙O中,圆心O在坐标原点上,半径为210,点P的坐标为(4,个),那么点 2020-05-17 …
已知圆x^2+y^2=9的圆心为o,点Q(a,b)在圆P外,以OQ为直径作圆M与圆O相交于A、B两 2020-06-09 …
在Rt△ABC中,∠C=90°,AC=3,BC=4(1)求△ABC内切圆的半径(2)若移动圆心O的 2020-07-09 …
已知⊙O的半径r=10,圆心O到直线l的距离OD=6,在直线l上有A、B、C三点,AD=6,BD= 2020-07-17 …
已知圆O:x2+y2=4,直线l:kx-y-k-1=0(1)判断直线l和圆O的位置关系.(2)求圆 2020-07-18 …
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于 2020-07-24 …
⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O的位置关系是()A. 2020-07-26 …
如图,在矩形ABCD中,AB=3,BC=4,P是边AD上一点(除端点A),过点A、B、P作○O(1 2020-07-30 …
O,I分别是锐角三角形ABC的外心,内心.O',I'分别是O,I关于BC的对称点.已知A、B、O' 2020-07-30 …
如图,O点正下方有一半径为R的光滑圆弧轨道,圆心位置恰好为O点,在弧形轨道上接近O′(O点正下方)处 2020-12-25 …