早教吧作业答案频道 -->数学-->
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.
题目详情
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.

(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.

(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.
▼优质解答
答案和解析
(1)线段AC是⊙O的切线;
理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),
∴∠BDO=∠CAD(等量代换);
又∵OA=OB(⊙O的半径),
∴∠B=∠OAB(等边对等角);
∵OB⊥OC(已知),
∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,
∴线段AC是⊙O的切线;
(2)设AC=x(x>0).
∵∠CAD=∠CDA(已知),
∴DC=AC=x(等角对等边);
∵OA=5,OD=1,
∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切线,
∴在Rt△OAC中,根据勾股定理得,
OC2=AC2+OA2,即
(1+x)2=x2+52,
解得x=12,即AC=12.

理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),
∴∠BDO=∠CAD(等量代换);
又∵OA=OB(⊙O的半径),
∴∠B=∠OAB(等边对等角);
∵OB⊥OC(已知),
∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,
∴线段AC是⊙O的切线;
(2)设AC=x(x>0).
∵∠CAD=∠CDA(已知),
∴DC=AC=x(等角对等边);
∵OA=5,OD=1,
∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切线,
∴在Rt△OAC中,根据勾股定理得,
OC2=AC2+OA2,即
(1+x)2=x2+52,
解得x=12,即AC=12.
看了 如图,△OAC中,以O为圆心...的网友还看了以下:
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-04-05 …
关于正负数,绝对值a,c为小于0的数,即负数b大于0,即正数c小于aa+b的绝对值+b-c的绝对值 2020-05-24 …
已知a,b,c均为整数,且a-b的绝对值的三次方+c-a的绝对值的平方=1,求a-c的绝对值+c- 2020-06-24 …
若实数a,b,c满足a<0,b>0,c>0,且|c|>|b|>|a|,比较a,b,c,a+b,a+ 2020-06-27 …
数学题目..!谢谢...!1.b(x-y)+c(y-x)=(x-丫)()2.a(a+b)^2+(b 2020-07-13 …
计算:有理数a、b,c在数轴上的对应点如图,且a、b,c满足条件10|a|=5|b|=2|c|=1 2020-07-13 …
条件等式求值~帮忙做一下...1.已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+ 2020-07-24 …
1.b(x-y)+c(y-x)=(x-y)()2.a(a+b)^2+(b+a)^3中的公因式是3. 2020-08-01 …
1有理数a,b,c分别为正数正数负数,且a>b>c,化简c-b的绝对值加a-c的绝对值加b-c的绝 2020-08-03 …
F=(A+B)·(A+C`)的对偶式是()(A)A'·B+A'·C(B)A·B'+A·C'(C)(A 2020-11-11 …