早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.(1)判断AC与⊙O的位置关系,并证明你的结论;(2)若OA=5,OD=1,求线段AC的长.

题目详情
如图,△OAC中,以O为圆心,OA为半径作⊙O,作OB⊥OC交⊙O于B,垂足为O,连接AB交OC于点D,∠CAD=∠CDA.

(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OA=5,OD=1,求线段AC的长.
▼优质解答
答案和解析
(1)线段AC是⊙O的切线;
理由如下:∵∠CAD=∠CDA(已知),∠BDO=∠CDA(对顶角相等),
∴∠BDO=∠CAD(等量代换);
又∵OA=OB(⊙O的半径),
∴∠B=∠OAB(等边对等角);
∵OB⊥OC(已知),
∴∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,
∴线段AC是⊙O的切线;
(2)设AC=x(x>0).
∵∠CAD=∠CDA(已知),
∴DC=AC=x(等角对等边);
∵OA=5,OD=1,
∴OC=OD+DC=1+x;
∵由(1)知,AC是⊙O的切线,
∴在Rt△OAC中,根据勾股定理得,
OC2=AC2+OA2,即
(1+x)2=x2+52
解得x=12,即AC=12.