早教吧作业答案频道 -->其他-->
(2012•连云港)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所
题目详情

(1)求抛物线所对应的函数解析式;
(2)求△ABD的面积;
(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.
▼优质解答
答案和解析
(1)∵四边形OCEF为矩形,OF=2,EF=3,
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得
,
解得
,
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=
×4×4=8;
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上.
∴点C的坐标为(0,3),点E的坐标为(2,3).
把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,
得
|
解得
|
∴抛物线所对应的函数解析式为y=-x2+2x+3;
(2)∵y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为D(1,4),
∴△ABD中AB边的高为4,
令y=0,得-x2+2x+3=0,
解得x1=-1,x2=3,
所以AB=3-(-1)=4,
∴△ABD的面积=
1 |
2 |
(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,
∴点A对应点G的坐标为(3,2),
当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上.
看了(2012•连云港)如图,抛物...的网友还看了以下:
数学如图所示,已知抛物线的对称轴是直线x=5/2,抛物线与x轴相交于A、B(4,0)两点,如图所示, 2020-03-30 …
如图所示,在同一高度处用长L=6m的细线连接两个小球A和B,现将AB两个小球沿同一直线从同一点先后 2020-05-17 …
如图所示,A,B两球之间用长6m的柔软细线相连,将两球相隔0.8s先后从同一高度同一点均以4.5m 2020-06-22 …
已知一抛物线通过x轴上的两点A(1,0),B(3,0).(1)求证:两坐标轴与该抛物线所围图形的面 2020-06-29 …
如图所示,质量为m的小球用一根轻绳连接在固定点O,绳长为L.现将该小球自O点正上方正上方L处,以初 2020-06-29 …
如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0 2020-11-01 …
(2012•连云港)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标 2020-11-12 …
如图所示,A、B两小球之间用长是6m的细线相连,将A、B两球相隔0.8s先后从同一高度处以4.5m/ 2020-12-05 …
如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两 2020-12-25 …
如图所示,已知抛物线y=x²+4x+m与y轴交于点A(0,3),与x轴交于点B,C,直线y=KX+B 2021-01-10 …