早教吧作业答案频道 -->数学-->
已知P点是三角形ABC内一点,且满足向量AP+2BP+3CP=0.设Q为CP的延长线与AB的交点、令向量CP=p.用p表示向量CQ.
题目详情
已知P点是三角形ABC内一点,且满足向量AP+2BP+3CP=0.设Q为CP的延长线与AB的交点、令向量CP=p.用p表示向量CQ.
▼优质解答
答案和解析
设向量CA=a,向量CB=b,向量CQ=λ*向量CP=λp,(λ为实数),则
向量AP=CP-CA=p-a,向量BP=CP-CB=p-b,
代入已知条件AP+2BP+3CP=0得
(p-a)+2(p-b)+3p=0.
化简得a=6p-2b …………①
又向量AQ=CQ-CA=λp-a,向量BQ=CQ-CB=λp-b,
因为向量AQ与BQ共线,所以令向量AQ=k*向量BQ,(k为实数),则有
λp-a=k(λp-b) …………②
①②联立消去向量a得(λ-kλ-6)p+(k+2)b=0
因为p与b均为不为0的向量,所以有
λ-kλ-6=0且k+2=0
两式联立解得λ=3.
所以向量CQ=3*向量CP.
向量AP=CP-CA=p-a,向量BP=CP-CB=p-b,
代入已知条件AP+2BP+3CP=0得
(p-a)+2(p-b)+3p=0.
化简得a=6p-2b …………①
又向量AQ=CQ-CA=λp-a,向量BQ=CQ-CB=λp-b,
因为向量AQ与BQ共线,所以令向量AQ=k*向量BQ,(k为实数),则有
λp-a=k(λp-b) …………②
①②联立消去向量a得(λ-kλ-6)p+(k+2)b=0
因为p与b均为不为0的向量,所以有
λ-kλ-6=0且k+2=0
两式联立解得λ=3.
所以向量CQ=3*向量CP.
看了 已知P点是三角形ABC内一点...的网友还看了以下:
如图(1),等边△ABC内有一点P若点P到顶点A,B,C,的距离分别为3,4,5…等边△ABC内有 2020-05-13 …
如图,p是正三角形ABC内的一点,若将三角形PAB绕点A逆时针旋转到三角形P'AC,则角PAP'等 2020-05-16 …
为什么系统对外做的功w=p外dv而不是p内dv啊…?我总觉得应该是w=p内dv才对啊……我是这么想 2020-05-17 …
p(a一杠b一杠c一杠)的概率求它的表达式~ 2020-06-13 …
由不等式组围成的三角形区域内有一个内切圆,向该区域内随机投一个点,该点落在圆内的概率是关于t的函数 2020-07-30 …
已知直角坐标系平面内点A(4,0)B(2,-2),C(1,1)在直角坐标平面内求一点P,使点A,B 2020-07-31 …
①各象限内点的坐标的符号特征:点P(a,b):p在象限←→a>0且b>0,p在象限←→a<0,b> 2020-07-31 …
在半径为R的圆O内有一点P,PO=a(a≠0),过点p的每一条弦都被P分成长为x,y的两段,在半径 2020-08-01 …
如图所示,电阻R=1Ω、半径r1=0.2m的单匝圆形导线框P内有一个与P共面的圆形磁场区域Q,P、Q 2020-11-01 …
如图画的是两个由同一起点向同一方向作直线运动的物体的速度图象.()A.到t1时刻A停下B.到t2时刻 2020-12-09 …