早教吧作业答案频道 -->数学-->
如图1,点A在x轴上,点D在y轴上,以OA、AD为边分别作等边△OAC和等边△ADE,若D(0,4),A(2,0).(1)若∠DAC=10°,求CE的长和∠AEC的度数.(2)如图2,若点P为x轴正半轴上一动点,点P
题目详情
如图1,点A在x轴上,点D在y轴上,以OA、AD为边分别作等边△OAC和等边△ADE,若D(0,4),A(2,0).

(1)若∠DAC=10°,求CE的长和∠AEC的度数.
(2)如图2,若点P为x轴正半轴上一动点,点P在点A的右边,连PC,以PC为边在第一象限作等边△PCM,延长MA交y轴于N,当点P运动时,
①∠ANO的值是否发生变化?若不变,求其值,若变化,请说明理由.
②AM-AP的值是否发生变化?若不变,求其值,若变化,请说明理由.

(1)若∠DAC=10°,求CE的长和∠AEC的度数.
(2)如图2,若点P为x轴正半轴上一动点,点P在点A的右边,连PC,以PC为边在第一象限作等边△PCM,延长MA交y轴于N,当点P运动时,
①∠ANO的值是否发生变化?若不变,求其值,若变化,请说明理由.
②AM-AP的值是否发生变化?若不变,求其值,若变化,请说明理由.
▼优质解答
答案和解析
(1)∵△AOC和△DAE是等边三角形,
∴AC=AO,AE=AD,∠OAC=∠EAD=60°
∴∠CAE=∠DAO=60○-∠CAD,
在△CAE和△OAD中
∴△CAE≌△OAD(SAS),
∴CE=OD=4,∠ACE=∠AOD=90°,
∵∠DAC=10°,∠DAE=60°,
∴∠CAE=60°-10°=50°,
∴∠AEC=180°-90°-50°=40°.
(2)①∠ANO的值不变化,其度数为30°,
理由是:∵△AOC和△CPM是等边三角形,
∴OA=AC,CP=CM,∠OCA=∠MCP=60°,
∴∠OCP=∠ACM,
在△OCP和△ACM中
∴△OCP≌△ACM(SAS),
∴∠COA=∠CAM=60°,
∴∠MAP=180°-60°-60°=60°,
∴∠OAN=∠MAP=60°,
∵∠AON=90°,
∴∠ANO=90°-60°=30°.
②不变,
理由是:∵△OCP≌△ACM,
∴AM=OP,
∴AM-OP=OP-AP=OA,
∵A(2,0),
∴OA=2,
即AM-AP=2,
∴AM-AP的值不发生变化,永远是2.
∴AC=AO,AE=AD,∠OAC=∠EAD=60°
∴∠CAE=∠DAO=60○-∠CAD,
在△CAE和△OAD中
|
∴△CAE≌△OAD(SAS),
∴CE=OD=4,∠ACE=∠AOD=90°,
∵∠DAC=10°,∠DAE=60°,
∴∠CAE=60°-10°=50°,
∴∠AEC=180°-90°-50°=40°.
(2)①∠ANO的值不变化,其度数为30°,

理由是:∵△AOC和△CPM是等边三角形,
∴OA=AC,CP=CM,∠OCA=∠MCP=60°,
∴∠OCP=∠ACM,
在△OCP和△ACM中
|
∴△OCP≌△ACM(SAS),
∴∠COA=∠CAM=60°,
∴∠MAP=180°-60°-60°=60°,
∴∠OAN=∠MAP=60°,
∵∠AON=90°,
∴∠ANO=90°-60°=30°.
②不变,
理由是:∵△OCP≌△ACM,
∴AM=OP,
∴AM-OP=OP-AP=OA,
∵A(2,0),
∴OA=2,
即AM-AP=2,
∴AM-AP的值不发生变化,永远是2.
看了如图1,点A在x轴上,点D在y...的网友还看了以下:
若点A在点O的南偏东35°方向,则点O在A的————方向. 2020-03-30 …
请教一道关于对数函数的题若函数f(x)=loga(x+1)(a>o,且a≠1)的定义域和值域都是[ 2020-05-21 …
(1/2)如图6所示,在Rt三角形ABC中,角C=90度,点D是AC的中点,且角A=角DBC,过点 2020-06-05 …
如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在 2020-06-12 …
指出下列各组条件中,条件p是结论q的什么条件(1)p:ab>o,q:/a/>/b/(4)p:整数a 2020-06-12 …
如图,点O是△ABC的两外角平分线的交点,下列结论:①OB=OC;②点O到AB、AC的距离相等;③ 2020-07-11 …
如图,△ABC内接于⊙O,过BC中点D作平行于AC的直线l,l交AB于E,交⊙O于G、F,交⊙O在 2020-07-20 …
指出下列各组条件中,条件p是结论q的什么条件(1)p:ab>o,q:/a/>/b/(4)p:整数a 2020-07-30 …
如图,点O在⊙A外,点P在线段OA上运动,以OP为半径的⊙O与⊙A的位置关系不可能是[]A.内含B 2020-07-31 …
已知abc≠0,且a+b+c=o,求a*(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b 2020-11-01 …