早教吧作业答案频道 -->数学-->
过抛物线y=2px的顶点O作两条互相垂直的弦交抛物线于A,B两点,证明A,B过定点我现在就用,
题目详情
过抛物线y=2px的顶点O作两条互相垂直的弦交抛物线于A,B两点,证明A,B过定点
我现在就用,
我现在就用,
▼优质解答
答案和解析
设OA斜率为k,则OB斜率为-1/k--->OA:y=k; OB:y=-x/k
OA与抛物线方程联立:(kx)^=2px----->xA=2p/k^,yA=2p/k
OB与抛物线方程联立:(-x/k)^=2px--->xB=2pk^,yB=-2pk
AB方程:y+2pk = [(2p/k+2pk)/(2p/k^-2pk^)](x-2pk^)
令:y=0--->x=2pk^+2pk[(1/k^-k^)/(1/k+k)]
=2pk^+2p[(1-k^^)/(1+k^)]
=2pk^+2p(1-k^)
=2p
即:AB恒过定点(2p,0)
(1).当AB垂直x轴时,AB:x=p/2
A(p/2, p), B(p/2, -p)
AB=2p
S△AOB=p^2/2
(2).当AB不垂直x轴时,AB:y=k(x-p/2),k≠0
代入抛物线:k^2(x^2-px+p^2/4)=2px
k^2x^2-(k^2+2)px+k^2p^2/4=0
所以 x1+x2=(k^2+2)p/k^2, x1*x2=p^2/4
所以 |y1-y2|=√(y1-y2)^2
=√(kx1-kx2)^2
=|k|*√(x1-x2)^2
=|k|*√[(x1+x2)^2-4x1x2]
=|k|*√[(k^2+2)^2p^2/k^4-p^2]
=|2p/k|*√(k^2+1)
所以 S△AOB=|2p/k|*√(k^2+1)*(p/2)*(1/2)
=|p^2/2k|√(k^2+1)
=|p^2/2|√(1+1/k^2)
无最小值.当k趋向无穷大时,S△AOB=p^2/2
∴综上,△AOB的最小值是p^2/2,此时AB垂直x轴
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为(X1+X2/2,Y1+Y2/2)
所以O到准线的距离= X1+X2/2+P/2=AB/2
得证
OA与抛物线方程联立:(kx)^=2px----->xA=2p/k^,yA=2p/k
OB与抛物线方程联立:(-x/k)^=2px--->xB=2pk^,yB=-2pk
AB方程:y+2pk = [(2p/k+2pk)/(2p/k^-2pk^)](x-2pk^)
令:y=0--->x=2pk^+2pk[(1/k^-k^)/(1/k+k)]
=2pk^+2p[(1-k^^)/(1+k^)]
=2pk^+2p(1-k^)
=2p
即:AB恒过定点(2p,0)
(1).当AB垂直x轴时,AB:x=p/2
A(p/2, p), B(p/2, -p)
AB=2p
S△AOB=p^2/2
(2).当AB不垂直x轴时,AB:y=k(x-p/2),k≠0
代入抛物线:k^2(x^2-px+p^2/4)=2px
k^2x^2-(k^2+2)px+k^2p^2/4=0
所以 x1+x2=(k^2+2)p/k^2, x1*x2=p^2/4
所以 |y1-y2|=√(y1-y2)^2
=√(kx1-kx2)^2
=|k|*√(x1-x2)^2
=|k|*√[(x1+x2)^2-4x1x2]
=|k|*√[(k^2+2)^2p^2/k^4-p^2]
=|2p/k|*√(k^2+1)
所以 S△AOB=|2p/k|*√(k^2+1)*(p/2)*(1/2)
=|p^2/2k|√(k^2+1)
=|p^2/2|√(1+1/k^2)
无最小值.当k趋向无穷大时,S△AOB=p^2/2
∴综上,△AOB的最小值是p^2/2,此时AB垂直x轴
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).
已知A(X1,Y1),B(X2,Y2),设焦点为F
因为抛物线上任一点到焦点的距离等于其到准线的距离
所以AB=AF+BF=X1+P/2+X2+P/2=X1+X2+P
而O为AB的中点,坐标为(X1+X2/2,Y1+Y2/2)
所以O到准线的距离= X1+X2/2+P/2=AB/2
得证
看了 过抛物线y=2px的顶点O作...的网友还看了以下:
四边形ABCD是一块菱形空坪,其周长为32倍根号2,角BAD=60度,对角线AC,BD相交于点O, 2020-05-13 …
如图,平行四边形ABCD中,AC,BD交于点O,过点O作EF分别交AB,CD于点E,F如图,平行四 2020-05-15 …
在矩形ABCD中,对角线AC、BD相交于点O,过点O作OE垂直BC,垂足为E,连结DE交AC于点P 2020-05-16 …
已知平行四边形ABCD的对角线AC,BD相交于点O,BD绕点O顺时针旋转分别交AB,DC与点E已知 2020-05-17 …
如图,在平面直角坐标系中,o为坐标原点,抛物线y等于二分之一x方加2x与x轴相交于点O,B两点顶点 2020-06-14 …
如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F,过点D作∠CDE=∠ 2020-07-31 …
数学关于对顶角的问题2条直线相交于点O有2对对顶角3条直线相交于点O有3对对顶角4条直线相交于点O 2020-08-01 …
如图,在三角形ABC中,角ABC和角ACB的平分线相交于点O,过点O作EF平行于BC交AB于点E,交 2020-11-23 …
1.正方形ABCD的边长是1,对角线AC,BD相交于点O,现以点O为圆心作圆,使点C在⊙O外,则半径 2020-11-24 …
如图,在C城周边已有两条公路l1,l2在点O处交汇,现规划在公路l1,l2上分别选择A,B两处为交汇 2020-12-01 …