早教吧作业答案频道 -->数学-->
直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?
题目详情
直线MN与直线PQ相交于O,点A在射线OP上运动,点B 在射线OM上运动.
(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=___;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=___.
(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=___;
(4)如图3,若∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=___.
(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=___;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=___.
(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=___;
(4)如图3,若∠AOB=90°,在△AEF中,如果有一个角是另一个角的4倍,则∠ABO的度数=___.

▼优质解答
答案和解析
(1)∠AEB的大小不变,
∵直线MN与直线PQ相交于O,
∴∠AOB=80°,
∴∠OAB+∠OBA=80°,
∵AE、BE分别是∠BAO和∠ABO角的平分线,
∴∠BAE=
∠OAB,∠ABE=
∠ABO,
∴∠BAE+∠ABE=
(∠OAB+∠ABO)=40°,
∴∠AEB=140°;
(2)∠CED的大小不变.
延长AD、BC交于点F.
∵直线MN与直线PQ相交于O,
∴∠AOB=80°,
∴∠OAB+∠OBA=80°,
∴∠PAB+∠MBA=280°,
∵AD、BC分别是∠BAP和∠ABM的角平分线,
∴∠BAD=
∠BAP,∠ABC=
∠ABM,
∴∠BAD+∠ABC=
(∠PAB+∠ABM)=140°,
∴∠F=40°,
∴∠FDC+∠FCD=140°,
∴∠CDA+∠DCB=220°,
∵DE、CE分别是∠ADC和∠BCD的角平分线,
∴∠CDE+∠DCE=115°,
∴∠E=65°;
故答案为:50°,65°;
(3)∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO=
∠BAO,∠EOQ=
∠BOQ,
∴∠E=∠EOQ-∠EAO=
(∠BOQ-∠BAO)=
∠ABO,
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=90°;
故答案为:90°;
(4)在△AEF中,∵有一个角是另一个角的4倍,故有:
①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;
②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);
③∠F=4∠E,∠E=18°,∠ABO=36°;
④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).
∴∠ABO为36°或45°.
故答案为:36°或45°.

∵直线MN与直线PQ相交于O,
∴∠AOB=80°,
∴∠OAB+∠OBA=80°,
∵AE、BE分别是∠BAO和∠ABO角的平分线,
∴∠BAE=
1 |
2 |
1 |
2 |
∴∠BAE+∠ABE=
1 |
2 |
∴∠AEB=140°;
(2)∠CED的大小不变.
延长AD、BC交于点F.
∵直线MN与直线PQ相交于O,
∴∠AOB=80°,
∴∠OAB+∠OBA=80°,
∴∠PAB+∠MBA=280°,
∵AD、BC分别是∠BAP和∠ABM的角平分线,
∴∠BAD=
1 |
2 |
1 |
2 |
∴∠BAD+∠ABC=
1 |
2 |
∴∠F=40°,
∴∠FDC+∠FCD=140°,
∴∠CDA+∠DCB=220°,
∵DE、CE分别是∠ADC和∠BCD的角平分线,
∴∠CDE+∠DCE=115°,
∴∠E=65°;
故答案为:50°,65°;
(3)∵∠BAO与∠BOQ的角平分线相交于E,
∴∠EAO=
1 |
2 |
1 |
2 |
∴∠E=∠EOQ-∠EAO=
1 |
2 |
1 |
2 |
∵AE、AF分别是∠BAO和∠OAG的角平分线,
∴∠EAF=90°;
故答案为:90°;
(4)在△AEF中,∵有一个角是另一个角的4倍,故有:
①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;
②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);
③∠F=4∠E,∠E=18°,∠ABO=36°;
④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).
∴∠ABO为36°或45°.
故答案为:36°或45°.
看了直线MN与直线PQ相交于O,点...的网友还看了以下:
在平面直角坐标系xOy中,双曲线(a>0,b>0)的两条渐近线与抛物线y2=4x的准线相交于A,B 2020-04-08 …
如图,已知直线a‖b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为如图,已 2020-05-16 …
平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a 2020-05-22 …
下列说法错误的是()A.直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则 2020-06-08 …
设A,B为同阶方阵,且通过初等变换可以化成相同的标准形,则:A.A和B的秩相等.B.A与B合同设A 2020-06-30 …
已知直线a.b是异面直线,直线c.d分别与ab都相交,求直线cd的位置关系()a.可能已知直线a. 2020-08-02 …
高中立体几何1已知a和b是两条直线,a不平行于b,a和b的交集是空集,则a与b()2已知a,b,c 2020-08-02 …
(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b 2020-11-02 …
如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB= 2020-11-02 …
如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB= 2020-11-02 …