早教吧作业答案频道 -->数学-->
已知矩形abcd中ab等于四cm,dc等于八cm,ac的垂直平分线ef分别交ad,bc于点e,f垂足为o
题目详情
已知矩形abcd中ab等于四cm,dc等于八cm,ac的垂直平分线ef分别交ad,bc于点e,f
垂足为o
垂足为o
▼优质解答
答案和解析
(1)证明:①∵四边形ABCD是矩形,
∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,∴OA=OC,
∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,
又∵EF⊥AC,∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,
∴AF=5cm.
(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,解得t=4/3,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒.
②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:
i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足为O,∴OA=OC,
∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,
又∵EF⊥AC,∴四边形AFCE为菱形,
②设菱形的边长AF=CF=xcm,则BF=(8-x)cm,
在Rt△ABF中,AB=4cm,由勾股定理得42+(8-x)2=x2,解得x=5,
∴AF=5cm.
(2)①显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;
同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.
因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,
∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,
∴PC=5t,QA=12-4t,
∴5t=12-4t,解得t=4/3,
∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=4/3秒.
②由题意得,以A、C、P、Q四点为顶点的四边形是平行四边形时,点P、Q在互相平行的对应边上.分三种情况:
i)当P点在AF上、Q点在CE上时,AP=CQ,即a=12-b,得a+b=12;
ii)当P点在BF上、Q点在DE上时,AQ=CP,即12-b=a,得a+b=12;
iii)当P点在AB上、Q点在CD上时,AP=CQ,即12-a=b,得a+b=12.
综上所述,a与b满足的数量关系式是a+b=12(ab≠0).
看了已知矩形abcd中ab等于四c...的网友还看了以下:
求证函数的差分等式的问题如何证明f(x)=x^m(即x的m次方)的m-1级差分等于m!(x+1/2 2020-05-13 …
已知M,P是两个不等的非空集合,则必有() A.空集属于M交P B.空集等于M交P,C.空集包含于 2020-05-16 …
质量为M的粗糙物块斜面上有一质量为m的木块匀减速下滑,地面受到的正压力应A等于(M+m)gA等于( 2020-05-20 …
形如根号M正负2根号N的化简,只要我们找出两个数A,B使a加b等于m,a乘以b等于n,使得(根号a 2020-06-06 …
如图,A,B,C,D,E,F,G,H,I代表九个各不相同的正整数,A,B,C,D,E,F,G,H, 2020-06-12 …
m个n维向量组线性相关,秩小于m,则相关,等于m,则无关.为什么不考虑n的感受呢?当n小于m时,同 2020-06-30 …
如何求下列积分积分上下限分别是0和正无穷,被积函数是X的m次方乘以e的-x次方,再除以m的阶乘(即 2020-07-08 …
高1数学题设数集M={X|M小于等于X小于等于M+3/4},N={X|n--1/3小于等于X小于等 2020-07-30 …
线性代数,A是m乘以n矩阵,非齐次线性方程Ax=b有解的充分条件是r(A)=m.why?r(A)小于 2020-11-22 …
已知x、y属于R,若不等式1/x2+1/y2大于等于m/x2+2y2恒成立,则实数m有A最小值3+2 2020-12-31 …