早教吧作业答案频道 -->数学-->
(2013•泰安)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确
题目详情

(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.
▼优质解答
答案和解析
(1)证明:在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,
,
∴△ABF≌△ADF(SAS),
∴∠AFD=∠AFB,
∵∠AFB=∠CFE,
∴∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;
(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,
在△BCF和△DCF中,
,
∴△BCF≌△DCF(SAS),
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
|
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,
在△ABF和△ADF中,
|
∴△ABF≌△ADF(SAS),
∴∠AFD=∠AFB,
∵∠AFB=∠CFE,
∴∠AFD=∠CFE;
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
又∵∠BAC=∠DAC,
∴∠CAD=∠ACD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
∴四边形ABCD是菱形;

(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,
理由:∵四边形ABCD为菱形,
∴BC=CD,∠BCF=∠DCF,
在△BCF和△DCF中,
|
∴△BCF≌△DCF(SAS),
∴∠CBF=∠CDF,
∵BE⊥CD,
∴∠BEC=∠DEF=90°,
∴∠EFD=∠BCD.
看了(2013•泰安)如图,在四边...的网友还看了以下:
若a,b,c均为整数,且|a-b|立方+|c-a|平方=1,求|a-c|+|c-b|+|b-a|的 2020-04-06 …
(b-a)(a-c)(c-b)=-[(-b+a)(-a+c)(-c+b)]对吧 也就是在(b-a) 2020-05-16 …
已知a+b+c=0,试求a^2/(2a^2+bc)+b^2/(2b^2+ac)+c^2/(2c^2 2020-06-11 …
1.若a、b、c均为整数,且|a-b|的立方+|c-a|的平方=1,求|a-c|+|c-b|+|b 2020-07-09 …
已知A、B、C、D、A+C、B+C、A+D、B+D分别表示1到8这8个自然数,且互不相等,如果A是 2020-07-14 …
(1)如图,a、b、c在数轴上的位置如图所示,化简:|a+b|-2|a+c|-|c-b|;(2)已 2020-07-30 …
下列各式合并同类项结果正确的是()A.-a+b=-(a+b)B.-a+b=-(b+a)C.-a-b 2020-08-01 …
3角形3边abc求证:abc≥(a+b-c)(a+c-b)(b+c-a)假设x=a+b-c>0y=a 2020-11-01 …
求解几道VB选择题(VB初学者)今天复习VB遇到不懂地方,小弟不才,菜鸟一个,望热心人帮帮忙.1:下 2020-11-15 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …