早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1(1)一个各项为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求{a}的通项公式.(2)在

题目详情
设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y)且f(1/2)=-1
(1)一个各项为正数的数列{an}满足:f(Sn)=f(an)+f(an+1)-1其中Sn为数列{an}的前n项和,求{a}的通项公式.
(2)在(1)的条件下,是否存在正数M使下列不等式对一切n属于N*成立?若存在,求出M的取值范围;若不存在,请说明理由.
2^n*a1*a2.*an>=M*更号(2n+1)*(2a1-10*(2a2-1)*.(2an-1)
更号只在(2n+1)上.an+1的1在外面
学过....可以用
▼优质解答
答案和解析
f(Sn)=f(an)+f(an+1)-1=f(an(an+1)/2)
Sn=an(an+1)/2
s1=a1(a1+1)/2=a1
a1=1
1+a2=a2(a2+1)/2
a2=2
a3=3
an=n
因为sn=n(n+1)/2
a1*a2.*an也在指数上吗
学过数学归纳法吗